基于密度的反应性理论应用于激发态

Xiaoyan An, Wenbiao Zhang, Xin He, Meng Li, Chunying Rong, Shubin Liu
{"title":"基于密度的反应性理论应用于激发态","authors":"Xiaoyan An,&nbsp;Wenbiao Zhang,&nbsp;Xin He,&nbsp;Meng Li,&nbsp;Chunying Rong,&nbsp;Shubin Liu","doi":"10.1007/s43673-023-00114-2","DOIUrl":null,"url":null,"abstract":"<div><p>Excited states are essential to many chemical processes in photosynthesis, solar cells, light-emitting diodes, and so on, yet how to formulate, quantify, and predict physiochemical properties for excited states from the theoretical perspective is far from being established. In this work, we leverage the four density-based frameworks from density functional theory (DFT) including orbital-free DFT, conceptual DFT, information-theoretic approach and direct use of density associated descriptors and apply them to the lowest singlet and triplet excited states for a variety of molecular systems to examine their stability, bonding, and reactivity propensities. Our results from the present study elucidate that it is feasible to employ these density-based frameworks to appreciate physiochemical properties for excited states and that excited state propensities can be markedly different from, sometime completely opposite to, those in the ground state. This work is the first effort, to the best of our knowledge, utilizing density-based reactivity frameworks to excited state. It should offer ample opportunities in the future to deal with real-world problems in photophysical and photochemical processes and transformations.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-023-00114-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Density-based Reactivity Theory Applied to Excited States\",\"authors\":\"Xiaoyan An,&nbsp;Wenbiao Zhang,&nbsp;Xin He,&nbsp;Meng Li,&nbsp;Chunying Rong,&nbsp;Shubin Liu\",\"doi\":\"10.1007/s43673-023-00114-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Excited states are essential to many chemical processes in photosynthesis, solar cells, light-emitting diodes, and so on, yet how to formulate, quantify, and predict physiochemical properties for excited states from the theoretical perspective is far from being established. In this work, we leverage the four density-based frameworks from density functional theory (DFT) including orbital-free DFT, conceptual DFT, information-theoretic approach and direct use of density associated descriptors and apply them to the lowest singlet and triplet excited states for a variety of molecular systems to examine their stability, bonding, and reactivity propensities. Our results from the present study elucidate that it is feasible to employ these density-based frameworks to appreciate physiochemical properties for excited states and that excited state propensities can be markedly different from, sometime completely opposite to, those in the ground state. This work is the first effort, to the best of our knowledge, utilizing density-based reactivity frameworks to excited state. It should offer ample opportunities in the future to deal with real-world problems in photophysical and photochemical processes and transformations.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":100007,\"journal\":{\"name\":\"AAPPS Bulletin\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43673-023-00114-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPPS Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43673-023-00114-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-023-00114-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

激发态对于光合作用、太阳能电池、发光二极管等许多化学过程都至关重要,然而如何从理论角度制定、量化和预测激发态的理化性质却远未得到确立。在这项工作中,我们利用密度泛函理论(DFT)的四种基于密度的框架,包括无轨道 DFT、概念 DFT、信息理论方法和直接使用密度相关描述符,并将它们应用于多种分子体系的最低单线态和三线态激发态,以研究它们的稳定性、成键性和反应性倾向。本研究的结果阐明,利用这些基于密度的框架来了解激发态的理化性质是可行的,而且激发态的倾向性可能与基态的倾向性明显不同,有时甚至完全相反。据我们所知,这是首次利用基于密度的反应性框架来研究激发态。它将为未来处理光物理和光化学过程及转化中的实际问题提供大量机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Density-based Reactivity Theory Applied to Excited States

Excited states are essential to many chemical processes in photosynthesis, solar cells, light-emitting diodes, and so on, yet how to formulate, quantify, and predict physiochemical properties for excited states from the theoretical perspective is far from being established. In this work, we leverage the four density-based frameworks from density functional theory (DFT) including orbital-free DFT, conceptual DFT, information-theoretic approach and direct use of density associated descriptors and apply them to the lowest singlet and triplet excited states for a variety of molecular systems to examine their stability, bonding, and reactivity propensities. Our results from the present study elucidate that it is feasible to employ these density-based frameworks to appreciate physiochemical properties for excited states and that excited state propensities can be markedly different from, sometime completely opposite to, those in the ground state. This work is the first effort, to the best of our knowledge, utilizing density-based reactivity frameworks to excited state. It should offer ample opportunities in the future to deal with real-world problems in photophysical and photochemical processes and transformations.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
Correction: Intersections of ultracold atomic polarons and nuclear clusters: how is a chart of nuclides modified in dilute neutron matter? News and Views (11 & 12) Nuclear level lifetime measurements across varied ranges using the digital INGA at TIFR Neutron emission spectrometer in magnetic confinement fusion Fundamental understanding of voltage decay in Li-rich Mn-based layered oxides cathode materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1