{"title":"基于速度变换的双叉臂悬架簧下质量运动学特性","authors":"Yupeng Duan \n (, ), Jinglai Wu \n (, ), Yunqing Zhang \n (, )","doi":"10.1007/s10409-024-23661-x","DOIUrl":null,"url":null,"abstract":"<div><p>The transformation from multibody models to lumped-parameter models is a crucial aspect of vehicle dynamics research. The velocity transformation method is adopted in this research, and the suspension multibody model is described using only one degree of freedom. It is found that the equivalent mass of the system is time-dependent during the simulation process, as observed in numerical simulations. Further symbolic calculations are conducted to derive the analytical form of the equivalent mass, and the results show that once the static parameters are determined, the equivalent mass of the suspension system is determined solely by the vertical position of the suspension upright, which reveals the kinematics characteristic of the equivalent mass of the suspension system. It is found that the equivalent mass experiences smaller changes when the suspension is compressed from the middle position, but larger changes when the suspension is extended. Furthermore, by comparing the multibody model, the lumped-parameter model with static mass, and the proposed lumped-parameter model considering the kinematics characteristic of the equivalent unsprung mass, the proposed model produces simulation results that more closely match the original multibody model than the model with static mass. The improvements in accuracy can be up to 20% under certain evaluation metrics.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematics characteristics of unsprung mass in a double wishbone suspension based on velocity transformation\",\"authors\":\"Yupeng Duan \\n (, ), Jinglai Wu \\n (, ), Yunqing Zhang \\n (, )\",\"doi\":\"10.1007/s10409-024-23661-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The transformation from multibody models to lumped-parameter models is a crucial aspect of vehicle dynamics research. The velocity transformation method is adopted in this research, and the suspension multibody model is described using only one degree of freedom. It is found that the equivalent mass of the system is time-dependent during the simulation process, as observed in numerical simulations. Further symbolic calculations are conducted to derive the analytical form of the equivalent mass, and the results show that once the static parameters are determined, the equivalent mass of the suspension system is determined solely by the vertical position of the suspension upright, which reveals the kinematics characteristic of the equivalent mass of the suspension system. It is found that the equivalent mass experiences smaller changes when the suspension is compressed from the middle position, but larger changes when the suspension is extended. Furthermore, by comparing the multibody model, the lumped-parameter model with static mass, and the proposed lumped-parameter model considering the kinematics characteristic of the equivalent unsprung mass, the proposed model produces simulation results that more closely match the original multibody model than the model with static mass. The improvements in accuracy can be up to 20% under certain evaluation metrics.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 2\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-23661-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-23661-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Kinematics characteristics of unsprung mass in a double wishbone suspension based on velocity transformation
The transformation from multibody models to lumped-parameter models is a crucial aspect of vehicle dynamics research. The velocity transformation method is adopted in this research, and the suspension multibody model is described using only one degree of freedom. It is found that the equivalent mass of the system is time-dependent during the simulation process, as observed in numerical simulations. Further symbolic calculations are conducted to derive the analytical form of the equivalent mass, and the results show that once the static parameters are determined, the equivalent mass of the suspension system is determined solely by the vertical position of the suspension upright, which reveals the kinematics characteristic of the equivalent mass of the suspension system. It is found that the equivalent mass experiences smaller changes when the suspension is compressed from the middle position, but larger changes when the suspension is extended. Furthermore, by comparing the multibody model, the lumped-parameter model with static mass, and the proposed lumped-parameter model considering the kinematics characteristic of the equivalent unsprung mass, the proposed model produces simulation results that more closely match the original multibody model than the model with static mass. The improvements in accuracy can be up to 20% under certain evaluation metrics.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics