Nawal El Ghouate, Ahmed Bencherqui, Hanaa Mansouri, Ahmed El Maloufy, Mohamed Amine Tahiri, Hicham Karmouni, Mhamed Sayyouri, S. S. Askar, Mohamed Abouhawwash
{"title":"用混沌图改进开普勒优化算法:综合性能评估和工程应用","authors":"Nawal El Ghouate, Ahmed Bencherqui, Hanaa Mansouri, Ahmed El Maloufy, Mohamed Amine Tahiri, Hicham Karmouni, Mhamed Sayyouri, S. S. Askar, Mohamed Abouhawwash","doi":"10.1007/s10462-024-10857-5","DOIUrl":null,"url":null,"abstract":"<div><p>The Kepler Optimisation Algorithm (KOA) is a recently proposed algorithm that is inspired by Kepler’s laws to predict the positions and velocities of planets at a given time. However, although promising, KOA can encounter challenges such as convergence to sub-optimal solutions or slow convergence speed. This paper proposes an improvement to KOA by integrating chaotic maps to solve complex engineering problems. The improved algorithm, named Chaotic Kepler Optimization Algorithm (CKOA), is characterized by a better ability to avoid local minima and to reach globally optimal solutions thanks to a dynamic diversification strategy based on chaotic maps. To confirm the effectiveness of the suggested approach, in-depth statistical analyses were carried out using the CEC2020 and CEC2022 benchmarks. These analyses included mean and standard deviation of fitness, convergence curves, Wilcoxon tests, as well as population diversity assessments. The experimental results, which compare CKOA not only to the original KOA but also to eight other recent optimizers, show that the proposed algorithm performs better in terms of convergence speed and solution quality. In addition, CKOA has been successfully tested on three complex engineering problems, confirming its robustness and practical effectiveness. These results make CKOA a powerful optimisation tool in a variety of complex real-world contexts. After final acceptance, the source code will be uploaded to the Github account: nawal.elghouate@usmba.ac.ma.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"57 11","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-10857-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Improving the Kepler optimization algorithm with chaotic maps: comprehensive performance evaluation and engineering applications\",\"authors\":\"Nawal El Ghouate, Ahmed Bencherqui, Hanaa Mansouri, Ahmed El Maloufy, Mohamed Amine Tahiri, Hicham Karmouni, Mhamed Sayyouri, S. S. Askar, Mohamed Abouhawwash\",\"doi\":\"10.1007/s10462-024-10857-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Kepler Optimisation Algorithm (KOA) is a recently proposed algorithm that is inspired by Kepler’s laws to predict the positions and velocities of planets at a given time. However, although promising, KOA can encounter challenges such as convergence to sub-optimal solutions or slow convergence speed. This paper proposes an improvement to KOA by integrating chaotic maps to solve complex engineering problems. The improved algorithm, named Chaotic Kepler Optimization Algorithm (CKOA), is characterized by a better ability to avoid local minima and to reach globally optimal solutions thanks to a dynamic diversification strategy based on chaotic maps. To confirm the effectiveness of the suggested approach, in-depth statistical analyses were carried out using the CEC2020 and CEC2022 benchmarks. These analyses included mean and standard deviation of fitness, convergence curves, Wilcoxon tests, as well as population diversity assessments. The experimental results, which compare CKOA not only to the original KOA but also to eight other recent optimizers, show that the proposed algorithm performs better in terms of convergence speed and solution quality. In addition, CKOA has been successfully tested on three complex engineering problems, confirming its robustness and practical effectiveness. These results make CKOA a powerful optimisation tool in a variety of complex real-world contexts. After final acceptance, the source code will be uploaded to the Github account: nawal.elghouate@usmba.ac.ma.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"57 11\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-024-10857-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-024-10857-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-10857-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improving the Kepler optimization algorithm with chaotic maps: comprehensive performance evaluation and engineering applications
The Kepler Optimisation Algorithm (KOA) is a recently proposed algorithm that is inspired by Kepler’s laws to predict the positions and velocities of planets at a given time. However, although promising, KOA can encounter challenges such as convergence to sub-optimal solutions or slow convergence speed. This paper proposes an improvement to KOA by integrating chaotic maps to solve complex engineering problems. The improved algorithm, named Chaotic Kepler Optimization Algorithm (CKOA), is characterized by a better ability to avoid local minima and to reach globally optimal solutions thanks to a dynamic diversification strategy based on chaotic maps. To confirm the effectiveness of the suggested approach, in-depth statistical analyses were carried out using the CEC2020 and CEC2022 benchmarks. These analyses included mean and standard deviation of fitness, convergence curves, Wilcoxon tests, as well as population diversity assessments. The experimental results, which compare CKOA not only to the original KOA but also to eight other recent optimizers, show that the proposed algorithm performs better in terms of convergence speed and solution quality. In addition, CKOA has been successfully tested on three complex engineering problems, confirming its robustness and practical effectiveness. These results make CKOA a powerful optimisation tool in a variety of complex real-world contexts. After final acceptance, the source code will be uploaded to the Github account: nawal.elghouate@usmba.ac.ma.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.