青藏高原东南部高三江地区筑坝拦河的措多钦岩崩的发展和运动学特征

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Bulletin of Engineering Geology and the Environment Pub Date : 2024-10-04 DOI:10.1007/s10064-024-03925-1
Zunhong Ke, Fuchu Dai, Siyuan Zhao
{"title":"青藏高原东南部高三江地区筑坝拦河的措多钦岩崩的发展和运动学特征","authors":"Zunhong Ke,&nbsp;Fuchu Dai,&nbsp;Siyuan Zhao","doi":"10.1007/s10064-024-03925-1","DOIUrl":null,"url":null,"abstract":"<div><p>Landslides resulting in complete river blockage have frequently occurred in the Three River Region (TRR) during the geomorphological evolution of the Tibetan Plateau. River-damming landslides occurring in low-relief regions of the TRR have received less attention compared to those in deeply-incised valleys. The 2.5 Mm<sup>3</sup> Cuoduoqin rockslide originated from the south-facing hillslope of a southeast-east-trending ridge, leading to complete blockage of the Quzhaqu River. The original failure mainly involves blocky metamorphic limestone and phyllite. The Quzha Lake Fault providing rear rupture and two other groups of joints facilitating sidewise and toe releases are considered predisposing factors contributing to slope instability. Ongoing tectonic uplift and cyclic glaciations are considered preparatory factors, shifting the slope from stable to marginally unstable. A prehistoric earthquake, likely corresponding to an ancient rupture event on the active Nujiang Fault Zone (NJFZ), is deemed as the most probable trigger for this large rock slope failure. The 2D discrete element method (DEM) software UDEC is utilized to analyze the static slope stability and to reproduce the kinematic process of the rockslide. The static analysis indicates that the original rock slope was in equilibrium under natural conditions. The kinematic process can be divided into three phases: initial detachment within seconds after applying seismic load, downslope acceleration after crossing the slope knickpoint, and accumulation after traveling into the valley bottom. This case study, focusing on the development and kinematics of the Cuoduoqin rockslide, can help enhance the understanding of effective risk assessments of landslides in high-altitude and low-relief regions.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and kinematics of the river-damming Cuoduoqin rockslide in the high Three River Region, southeastern Tibetan Plateau\",\"authors\":\"Zunhong Ke,&nbsp;Fuchu Dai,&nbsp;Siyuan Zhao\",\"doi\":\"10.1007/s10064-024-03925-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Landslides resulting in complete river blockage have frequently occurred in the Three River Region (TRR) during the geomorphological evolution of the Tibetan Plateau. River-damming landslides occurring in low-relief regions of the TRR have received less attention compared to those in deeply-incised valleys. The 2.5 Mm<sup>3</sup> Cuoduoqin rockslide originated from the south-facing hillslope of a southeast-east-trending ridge, leading to complete blockage of the Quzhaqu River. The original failure mainly involves blocky metamorphic limestone and phyllite. The Quzha Lake Fault providing rear rupture and two other groups of joints facilitating sidewise and toe releases are considered predisposing factors contributing to slope instability. Ongoing tectonic uplift and cyclic glaciations are considered preparatory factors, shifting the slope from stable to marginally unstable. A prehistoric earthquake, likely corresponding to an ancient rupture event on the active Nujiang Fault Zone (NJFZ), is deemed as the most probable trigger for this large rock slope failure. The 2D discrete element method (DEM) software UDEC is utilized to analyze the static slope stability and to reproduce the kinematic process of the rockslide. The static analysis indicates that the original rock slope was in equilibrium under natural conditions. The kinematic process can be divided into three phases: initial detachment within seconds after applying seismic load, downslope acceleration after crossing the slope knickpoint, and accumulation after traveling into the valley bottom. This case study, focusing on the development and kinematics of the Cuoduoqin rockslide, can help enhance the understanding of effective risk assessments of landslides in high-altitude and low-relief regions.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03925-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03925-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在青藏高原的地貌演化过程中,三江源地区经常发生导致河流完全堵塞的滑坡。与深切河谷的滑坡相比,发生在三江源地区低洼地带的堰塞湖滑坡较少受到关注。2.5 百万立方米的绰钦山岩崩源自东南-东向山脊的南向山坡,导致曲扎曲河完全堵塞。原崩塌体主要为块状变质灰岩和辉绿岩。曲扎湖断层提供了后部断裂,另外两组节理促进了侧向和脚趾的释放,这些都被认为是导致斜坡不稳定的诱发因素。持续的构造隆升和周期性冰川作用被认为是导致斜坡从稳定变为轻微不稳定的准备因素。史前地震很可能是活动的怒江断裂带(NJFZ)上的古代断裂事件,被认为是这一大型岩石斜坡崩塌的最可能触发因素。利用二维离散元素法(DEM)软件 UDEC 分析了边坡的静态稳定性,并再现了岩石滑坡的运动过程。静态分析表明,原始岩坡在自然条件下处于平衡状态。运动过程可分为三个阶段:施加地震荷载后数秒内的初始脱离、越过斜坡节点后的下坡加速和进入谷底后的堆积。本案例研究以 "绰尔沁 "山体滑坡的发展和运动学为重点,有助于加深对高海拔和低地势地区滑坡风险有效评估的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and kinematics of the river-damming Cuoduoqin rockslide in the high Three River Region, southeastern Tibetan Plateau

Landslides resulting in complete river blockage have frequently occurred in the Three River Region (TRR) during the geomorphological evolution of the Tibetan Plateau. River-damming landslides occurring in low-relief regions of the TRR have received less attention compared to those in deeply-incised valleys. The 2.5 Mm3 Cuoduoqin rockslide originated from the south-facing hillslope of a southeast-east-trending ridge, leading to complete blockage of the Quzhaqu River. The original failure mainly involves blocky metamorphic limestone and phyllite. The Quzha Lake Fault providing rear rupture and two other groups of joints facilitating sidewise and toe releases are considered predisposing factors contributing to slope instability. Ongoing tectonic uplift and cyclic glaciations are considered preparatory factors, shifting the slope from stable to marginally unstable. A prehistoric earthquake, likely corresponding to an ancient rupture event on the active Nujiang Fault Zone (NJFZ), is deemed as the most probable trigger for this large rock slope failure. The 2D discrete element method (DEM) software UDEC is utilized to analyze the static slope stability and to reproduce the kinematic process of the rockslide. The static analysis indicates that the original rock slope was in equilibrium under natural conditions. The kinematic process can be divided into three phases: initial detachment within seconds after applying seismic load, downslope acceleration after crossing the slope knickpoint, and accumulation after traveling into the valley bottom. This case study, focusing on the development and kinematics of the Cuoduoqin rockslide, can help enhance the understanding of effective risk assessments of landslides in high-altitude and low-relief regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
期刊最新文献
Regional dynamic hazard assessment of rainfall–induced landslide guided by geographic similarity A strength prediction model of soil-rock mixture with varying rock proportions Analytical solution for concrete/rock interface shearing under CNS considering interlocking effect and wear behavior and its application Desiccation-induced cracking and deformation characteristics in compacted loess: insights from electrical resistivity and microstructure analysis Relation between the sliding friction angle of rock joints and the friction angle of intact cores at the brittle-ductile transition: An experimental study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1