{"title":"鲁甸地震下锚固抗倾覆边坡的动力稳定性分析:中国云南漫河川边坡案例研究","authors":"Shanbai Wu, Liangqing Wang, Qiong Wu, Jianlin Tian, Linfeng Zhu, Zihao Sun, Luobin Zheng, Chenlu Wang","doi":"10.1007/s10064-024-03904-6","DOIUrl":null,"url":null,"abstract":"<div><p>A quantitative assessment of the seismic stability of anchored anti-dip slopes is of great importance for the safety of residents and infrastructure in seismically active regions. However, the subject has received relatively little scientific attention globally. This study aims to analyze the dynamic stability of an anchored anti-dip slope during the Ludian earthquake in Yunnan Province, China, a region characterized by active faults and frequent strong earthquakes. The Manhekuan slope located near the Lancang River fault, an active fault in Yunnan Province, was chosen as a case study to propose a method that integrates engineering geological investigations with the discrete element method (DEM). To validate its effectiveness, the proposed method is compared with the pseudo-static method and subsequently applied to optimize the anchorage parameters of the Manhekuan slope. The results indicate that the stability factor achieved by the proposed method is slightly higher than that of the pseudo-static method, showing a 3.6% increase. The proposed method effectively describes the shear evolution characteristics of the anchor cable and its influence on the seismic dynamic stability of the anchored anti-dip slope. The dynamic stability of the Manhekuan slope under the Ludian earthquake is reasonably analyzed using three indices: stability factor, geological body displacement, and anchorage force. This analysis leads to the determination of optimal anchorage parameters for the Manhekuan slope. The findings provide a valuable reference for evaluating the seismic stability of anchored slope engineering in seismically active regions, including the Himalayas.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic stability analysis of anchored anti-dip slope under the Ludian earthquake: a case study of the Manhekuan slope, Yunnan, China\",\"authors\":\"Shanbai Wu, Liangqing Wang, Qiong Wu, Jianlin Tian, Linfeng Zhu, Zihao Sun, Luobin Zheng, Chenlu Wang\",\"doi\":\"10.1007/s10064-024-03904-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A quantitative assessment of the seismic stability of anchored anti-dip slopes is of great importance for the safety of residents and infrastructure in seismically active regions. However, the subject has received relatively little scientific attention globally. This study aims to analyze the dynamic stability of an anchored anti-dip slope during the Ludian earthquake in Yunnan Province, China, a region characterized by active faults and frequent strong earthquakes. The Manhekuan slope located near the Lancang River fault, an active fault in Yunnan Province, was chosen as a case study to propose a method that integrates engineering geological investigations with the discrete element method (DEM). To validate its effectiveness, the proposed method is compared with the pseudo-static method and subsequently applied to optimize the anchorage parameters of the Manhekuan slope. The results indicate that the stability factor achieved by the proposed method is slightly higher than that of the pseudo-static method, showing a 3.6% increase. The proposed method effectively describes the shear evolution characteristics of the anchor cable and its influence on the seismic dynamic stability of the anchored anti-dip slope. The dynamic stability of the Manhekuan slope under the Ludian earthquake is reasonably analyzed using three indices: stability factor, geological body displacement, and anchorage force. This analysis leads to the determination of optimal anchorage parameters for the Manhekuan slope. The findings provide a valuable reference for evaluating the seismic stability of anchored slope engineering in seismically active regions, including the Himalayas.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03904-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03904-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Dynamic stability analysis of anchored anti-dip slope under the Ludian earthquake: a case study of the Manhekuan slope, Yunnan, China
A quantitative assessment of the seismic stability of anchored anti-dip slopes is of great importance for the safety of residents and infrastructure in seismically active regions. However, the subject has received relatively little scientific attention globally. This study aims to analyze the dynamic stability of an anchored anti-dip slope during the Ludian earthquake in Yunnan Province, China, a region characterized by active faults and frequent strong earthquakes. The Manhekuan slope located near the Lancang River fault, an active fault in Yunnan Province, was chosen as a case study to propose a method that integrates engineering geological investigations with the discrete element method (DEM). To validate its effectiveness, the proposed method is compared with the pseudo-static method and subsequently applied to optimize the anchorage parameters of the Manhekuan slope. The results indicate that the stability factor achieved by the proposed method is slightly higher than that of the pseudo-static method, showing a 3.6% increase. The proposed method effectively describes the shear evolution characteristics of the anchor cable and its influence on the seismic dynamic stability of the anchored anti-dip slope. The dynamic stability of the Manhekuan slope under the Ludian earthquake is reasonably analyzed using three indices: stability factor, geological body displacement, and anchorage force. This analysis leads to the determination of optimal anchorage parameters for the Manhekuan slope. The findings provide a valuable reference for evaluating the seismic stability of anchored slope engineering in seismically active regions, including the Himalayas.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.