蛋白质家族的统计分析:网络和随机矩阵方法

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER The European Physical Journal B Pub Date : 2024-10-07 DOI:10.1140/epjb/s10051-024-00781-6
Rakhi Kumari, Pradeep Bhadola, Nivedita Deo
{"title":"蛋白质家族的统计分析:网络和随机矩阵方法","authors":"Rakhi Kumari,&nbsp;Pradeep Bhadola,&nbsp;Nivedita Deo","doi":"10.1140/epjb/s10051-024-00781-6","DOIUrl":null,"url":null,"abstract":"<p>We present a novel method for analyzing the structural organization of protein families by integrating random matrix theory (RMT) and network theory with the physiochemical properties of amino acids and multiple sequence alignment. RMT distinguishes significant interactions between amino acids from background noise, pinpointing coevolving positions likely crucial for protein structure and function. This property-based approach captures both short and long-range correlations, unlike previous methods that treat amino acids as mere characters. The eigenvector components of eigenvalues outside the RMT bound deviate from typical RMT observations, offering critical system information. We quantify the information content of each eigenvector using an entropic estimate, showing that the smallest eigenvectors are highly localized and informative. These eigenvectors form clusters of biologically and structurally significant positions, validated by experiments. By creating networks of amino acid interactions for each property, we uncover key motifs and interactions. This method enhances our understanding of protein evolution, interactions, and potential targets to modulate enzymatic actions. We study two protein families Cadherin-4 and Betalactamase families which display two extreme characteristics one nearly random and the other very structured or organised.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 10","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical analysis of proteins families: a network and random matrix approach\",\"authors\":\"Rakhi Kumari,&nbsp;Pradeep Bhadola,&nbsp;Nivedita Deo\",\"doi\":\"10.1140/epjb/s10051-024-00781-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a novel method for analyzing the structural organization of protein families by integrating random matrix theory (RMT) and network theory with the physiochemical properties of amino acids and multiple sequence alignment. RMT distinguishes significant interactions between amino acids from background noise, pinpointing coevolving positions likely crucial for protein structure and function. This property-based approach captures both short and long-range correlations, unlike previous methods that treat amino acids as mere characters. The eigenvector components of eigenvalues outside the RMT bound deviate from typical RMT observations, offering critical system information. We quantify the information content of each eigenvector using an entropic estimate, showing that the smallest eigenvectors are highly localized and informative. These eigenvectors form clusters of biologically and structurally significant positions, validated by experiments. By creating networks of amino acid interactions for each property, we uncover key motifs and interactions. This method enhances our understanding of protein evolution, interactions, and potential targets to modulate enzymatic actions. We study two protein families Cadherin-4 and Betalactamase families which display two extreme characteristics one nearly random and the other very structured or organised.</p>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"97 10\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-024-00781-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00781-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

通过将随机矩阵理论(RMT)和网络理论与氨基酸的理化特性和多序列比对相结合,我们提出了一种分析蛋白质家族结构组织的新方法。随机矩阵理论能将氨基酸之间的重要相互作用从背景噪声中区分出来,精确定位可能对蛋白质结构和功能至关重要的共同演化位置。这种基于属性的方法可以捕捉到短程和长程相关性,而不像以前的方法仅仅把氨基酸当作特征。RMT 界外特征值的特征向量成分偏离典型的 RMT 观察结果,提供了关键的系统信息。我们使用熵估算法量化了每个特征向量的信息含量,结果表明最小的特征向量具有高度的局部性和信息性。这些特征向量形成了具有生物和结构意义的位置群,并得到了实验的验证。通过为每种特性创建氨基酸相互作用网络,我们发现了关键的图案和相互作用。这种方法增强了我们对蛋白质进化、相互作用以及调节酶作用的潜在目标的理解。我们研究了两个蛋白质家族:Cadherin-4 和 Betalactamase 家族,这两个家族显示出两种极端特征,一种近乎随机,另一种则非常结构化或有组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical analysis of proteins families: a network and random matrix approach

We present a novel method for analyzing the structural organization of protein families by integrating random matrix theory (RMT) and network theory with the physiochemical properties of amino acids and multiple sequence alignment. RMT distinguishes significant interactions between amino acids from background noise, pinpointing coevolving positions likely crucial for protein structure and function. This property-based approach captures both short and long-range correlations, unlike previous methods that treat amino acids as mere characters. The eigenvector components of eigenvalues outside the RMT bound deviate from typical RMT observations, offering critical system information. We quantify the information content of each eigenvector using an entropic estimate, showing that the smallest eigenvectors are highly localized and informative. These eigenvectors form clusters of biologically and structurally significant positions, validated by experiments. By creating networks of amino acid interactions for each property, we uncover key motifs and interactions. This method enhances our understanding of protein evolution, interactions, and potential targets to modulate enzymatic actions. We study two protein families Cadherin-4 and Betalactamase families which display two extreme characteristics one nearly random and the other very structured or organised.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
期刊最新文献
Directional localization in disordered 2D tight-binding systems: insights from single-particle entanglement measures Synthetic data generation with hybrid quantum-classical models for the financial sector Nightclub bar dynamics: statistics of serving times Labeling small-degree nodes promotes semi-supervised community detection on graph convolutional network Multistability in a predator–prey model with generalist predator and strong Allee effect in prey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1