用可回收丝线制作的用于乳腺癌检测系统的新型三频微带贴片天线

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Brazilian Journal of Physics Pub Date : 2024-10-08 DOI:10.1007/s13538-024-01625-5
Emine Avşar Aydin
{"title":"用可回收丝线制作的用于乳腺癌检测系统的新型三频微带贴片天线","authors":"Emine Avşar Aydin","doi":"10.1007/s13538-024-01625-5","DOIUrl":null,"url":null,"abstract":"<div><p>Breast cancer ranks as the second most common cause of mortality among women globally, with the potential to increase survival rates by 97% through early detection. This study focuses on developing an innovative triple-band microstrip patch antenna designed to operate within the 2–6 GHz frequency spectrum. Simulation tests were conducted to evaluate its efficacy in early breast cancer detection. The antenna, constructed from copper tape and five different substrates (Felt, FR4, PET, PLA, TPU), was chosen considering its advantages for various applications. This design prioritizes wearer comfort while ensuring functionality and allows for producing antenna structures in desired geometries using 3D printing, even in complex configurations. With a general size of 30 × 30 mm<sup>2</sup>, the antenna underwent analyses on tumor-free models with tumors of different shapes and sizes, and additionally, to evaluate the performance of multiple antennas in detecting cancers, tumor models with 2 and 3 antenna numbers were analyzed in a total of six different breast scenarios. Critical performance parameters such as specific absorption rate (SAR), return loss (S11), and voltage standing wave ratio (VSWR) were obtained for each generated model. Simulation outcomes indicated SAR values within the permissible threshold for medical applications. Moreover, VSWR values maintained acceptability, while variations in return losses were contingent upon tumor dimensions, location, and the number of antennas used. Furthermore, the antenna’s adaptability to bending was scrutinized through bending analyses, affirming its robustness, and sustained operational capability. One of the significant contributions of the study is the utilization of recyclable filaments such as PLA, TPU, and Protopasta in experimental investigations, providing a pathway for producing environmentally friendly and flexible antennas and breast phantoms. This study offers a way to develop more sensitive and reliable breast cancer screening and early diagnosis tools.</p></div>","PeriodicalId":499,"journal":{"name":"Brazilian Journal of Physics","volume":"54 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Triple-Band Microstrip Patch Antenna for Breast Cancer Detection Systems Fabricated with Recyclable Filaments\",\"authors\":\"Emine Avşar Aydin\",\"doi\":\"10.1007/s13538-024-01625-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Breast cancer ranks as the second most common cause of mortality among women globally, with the potential to increase survival rates by 97% through early detection. This study focuses on developing an innovative triple-band microstrip patch antenna designed to operate within the 2–6 GHz frequency spectrum. Simulation tests were conducted to evaluate its efficacy in early breast cancer detection. The antenna, constructed from copper tape and five different substrates (Felt, FR4, PET, PLA, TPU), was chosen considering its advantages for various applications. This design prioritizes wearer comfort while ensuring functionality and allows for producing antenna structures in desired geometries using 3D printing, even in complex configurations. With a general size of 30 × 30 mm<sup>2</sup>, the antenna underwent analyses on tumor-free models with tumors of different shapes and sizes, and additionally, to evaluate the performance of multiple antennas in detecting cancers, tumor models with 2 and 3 antenna numbers were analyzed in a total of six different breast scenarios. Critical performance parameters such as specific absorption rate (SAR), return loss (S11), and voltage standing wave ratio (VSWR) were obtained for each generated model. Simulation outcomes indicated SAR values within the permissible threshold for medical applications. Moreover, VSWR values maintained acceptability, while variations in return losses were contingent upon tumor dimensions, location, and the number of antennas used. Furthermore, the antenna’s adaptability to bending was scrutinized through bending analyses, affirming its robustness, and sustained operational capability. One of the significant contributions of the study is the utilization of recyclable filaments such as PLA, TPU, and Protopasta in experimental investigations, providing a pathway for producing environmentally friendly and flexible antennas and breast phantoms. This study offers a way to develop more sensitive and reliable breast cancer screening and early diagnosis tools.</p></div>\",\"PeriodicalId\":499,\"journal\":{\"name\":\"Brazilian Journal of Physics\",\"volume\":\"54 6\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13538-024-01625-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s13538-024-01625-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌是全球妇女第二大常见死因,通过早期检测可将存活率提高 97%。这项研究的重点是开发一种创新的三频微带贴片天线,其设计工作频谱为 2-6 GHz。研究人员进行了模拟测试,以评估其在早期乳腺癌检测中的功效。天线由铜带和五种不同的基材(毛毡、FR4、PET、PLA、TPU)构成,考虑到其在各种应用中的优势,我们选择了这种天线。这种设计在确保功能性的同时优先考虑了佩戴者的舒适度,并允许使用 3D 打印技术按所需的几何形状制作天线结构,甚至是复杂的配置。天线的一般尺寸为 30 × 30 平方毫米,在无肿瘤模型上对不同形状和大小的肿瘤进行了分析,此外,为了评估多天线在检测癌症方面的性能,还在总共六种不同的乳房情况下对带有 2 个和 3 个天线的肿瘤模型进行了分析。每个生成的模型都获得了关键的性能参数,如比吸收率(SAR)、回波损耗(S11)和电压驻波比(VSWR)。仿真结果表明,SAR 值在医疗应用允许的阈值范围内。此外,驻波比值保持在可接受范围内,而回波损耗的变化则取决于肿瘤的尺寸、位置和使用的天线数量。此外,还通过弯曲分析仔细检查了天线对弯曲的适应性,肯定了其坚固性和持续运行能力。本研究的重大贡献之一是在实验研究中使用了聚乳酸、热塑性聚氨酯和 Protopasta 等可回收丝,为生产环保型柔性天线和乳房模型提供了途径。这项研究为开发更灵敏、更可靠的乳腺癌筛查和早期诊断工具提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Triple-Band Microstrip Patch Antenna for Breast Cancer Detection Systems Fabricated with Recyclable Filaments

Breast cancer ranks as the second most common cause of mortality among women globally, with the potential to increase survival rates by 97% through early detection. This study focuses on developing an innovative triple-band microstrip patch antenna designed to operate within the 2–6 GHz frequency spectrum. Simulation tests were conducted to evaluate its efficacy in early breast cancer detection. The antenna, constructed from copper tape and five different substrates (Felt, FR4, PET, PLA, TPU), was chosen considering its advantages for various applications. This design prioritizes wearer comfort while ensuring functionality and allows for producing antenna structures in desired geometries using 3D printing, even in complex configurations. With a general size of 30 × 30 mm2, the antenna underwent analyses on tumor-free models with tumors of different shapes and sizes, and additionally, to evaluate the performance of multiple antennas in detecting cancers, tumor models with 2 and 3 antenna numbers were analyzed in a total of six different breast scenarios. Critical performance parameters such as specific absorption rate (SAR), return loss (S11), and voltage standing wave ratio (VSWR) were obtained for each generated model. Simulation outcomes indicated SAR values within the permissible threshold for medical applications. Moreover, VSWR values maintained acceptability, while variations in return losses were contingent upon tumor dimensions, location, and the number of antennas used. Furthermore, the antenna’s adaptability to bending was scrutinized through bending analyses, affirming its robustness, and sustained operational capability. One of the significant contributions of the study is the utilization of recyclable filaments such as PLA, TPU, and Protopasta in experimental investigations, providing a pathway for producing environmentally friendly and flexible antennas and breast phantoms. This study offers a way to develop more sensitive and reliable breast cancer screening and early diagnosis tools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brazilian Journal of Physics
Brazilian Journal of Physics 物理-物理:综合
CiteScore
2.50
自引率
6.20%
发文量
189
审稿时长
6.0 months
期刊介绍: The Brazilian Journal of Physics is a peer-reviewed international journal published by the Brazilian Physical Society (SBF). The journal publishes new and original research results from all areas of physics, obtained in Brazil and from anywhere else in the world. Contents include theoretical, practical and experimental papers as well as high-quality review papers. Submissions should follow the generally accepted structure for journal articles with basic elements: title, abstract, introduction, results, conclusions, and references.
期刊最新文献
Effect of Temperature and Addition of Hematite on the Porous System of Foamed Glass Analysed by X-ray Microtomography Synthesis and Spectroscopic Analysis of Bi2Al4O9:Tb3+ Phosphor for Optical Applications Study of Tunneling Properties in ZnO/ZnCdO Trilayer Heterostructure for Spintronic Devices: Effect of the In-Plane Wave Vector Coherent Dynamics of Liquid Sodium at 423 K Metamaterial-Inspired Multi-port Tunable THz Antenna with Self-Multiplexing and MIMO Capability for 6G Wireless and Sensing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1