聚对苯二甲酸乙二醇酯薄膜表面活性氨基的生成及其定量评估

IF 1.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Russian Journal of Bioorganic Chemistry Pub Date : 2024-10-09 DOI:10.1134/S106816202405039X
G. F. Shtylev, I. Yu. Shishkin, S. A. Lapa, V. E. Shershov, V. E. Barsky, S. A. Polyakov, V. A. Vasiliskov, O. A. Zasedateleva, V. E. Kuznetsova, A. V. Chudinov
{"title":"聚对苯二甲酸乙二醇酯薄膜表面活性氨基的生成及其定量评估","authors":"G. F. Shtylev,&nbsp;I. Yu. Shishkin,&nbsp;S. A. Lapa,&nbsp;V. E. Shershov,&nbsp;V. E. Barsky,&nbsp;S. A. Polyakov,&nbsp;V. A. Vasiliskov,&nbsp;O. A. Zasedateleva,&nbsp;V. E. Kuznetsova,&nbsp;A. V. Chudinov","doi":"10.1134/S106816202405039X","DOIUrl":null,"url":null,"abstract":"<p><b>Objective:</b> Polyethylene terephthalate (PET) is thermally stable, biocompatible, transparent in visible and near-infrared light. The study of grafting conditions and the distribution of reactive amino groups on the PET surface without affecting the polymer array makes it possible to change the surface properties in a directed manner. <b>Methods:</b> A method for obtaining active amino groups on the surface of polyethylene terephthalate (PET) substrate by reaction with ethylenediamine was developed. A method for quantitative estimation of the concentration and distribution of chemically accessible amino groups on the surface of PET substrate using cyanine dye Cy5 and digital fluorescence microscopy was developed. <b>Results and Discussion:</b> The PET surface during chemical modification remains without visible damage up to the concentration of amino groups 8 pmol/cm<sup>2</sup>, while surface degradation is observed at higher concentrations. Chemically available amino groups capable of covalently binding to Cy5 dye are distributed unevenly, which is probably due to the presence of amorphous and crystalline areas on the surface of PET substrates. Amino groups can be used for further chemical modification of the PET surface, grafting of various functional groups, and covalent binding to biomolecules, which opens up prospects for the wide use of inexpensive PET as functional substrates in biochips, biosensors, lab-on-a-chip devices, and other biotechnological applications.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 5","pages":"2050 - 2057"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of Active Amino Groups on the Surface of a Polyethylene Terephthalate Film and Their Quantitative Evaluation\",\"authors\":\"G. F. Shtylev,&nbsp;I. Yu. Shishkin,&nbsp;S. A. Lapa,&nbsp;V. E. Shershov,&nbsp;V. E. Barsky,&nbsp;S. A. Polyakov,&nbsp;V. A. Vasiliskov,&nbsp;O. A. Zasedateleva,&nbsp;V. E. Kuznetsova,&nbsp;A. V. Chudinov\",\"doi\":\"10.1134/S106816202405039X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Objective:</b> Polyethylene terephthalate (PET) is thermally stable, biocompatible, transparent in visible and near-infrared light. The study of grafting conditions and the distribution of reactive amino groups on the PET surface without affecting the polymer array makes it possible to change the surface properties in a directed manner. <b>Methods:</b> A method for obtaining active amino groups on the surface of polyethylene terephthalate (PET) substrate by reaction with ethylenediamine was developed. A method for quantitative estimation of the concentration and distribution of chemically accessible amino groups on the surface of PET substrate using cyanine dye Cy5 and digital fluorescence microscopy was developed. <b>Results and Discussion:</b> The PET surface during chemical modification remains without visible damage up to the concentration of amino groups 8 pmol/cm<sup>2</sup>, while surface degradation is observed at higher concentrations. Chemically available amino groups capable of covalently binding to Cy5 dye are distributed unevenly, which is probably due to the presence of amorphous and crystalline areas on the surface of PET substrates. Amino groups can be used for further chemical modification of the PET surface, grafting of various functional groups, and covalent binding to biomolecules, which opens up prospects for the wide use of inexpensive PET as functional substrates in biochips, biosensors, lab-on-a-chip devices, and other biotechnological applications.</p>\",\"PeriodicalId\":758,\"journal\":{\"name\":\"Russian Journal of Bioorganic Chemistry\",\"volume\":\"50 5\",\"pages\":\"2050 - 2057\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106816202405039X\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S106816202405039X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:聚对苯二甲酸乙二醇酯(PET)具有热稳定性、生物相容性、在可见光和近红外线下透明。在不影响聚合物阵列的情况下,研究接枝条件和反应性氨基在 PET 表面的分布,可以有针对性地改变其表面特性。方法:开发了一种通过与乙二胺反应在聚对苯二甲酸乙二醇酯(PET)基材表面获得活性氨基的方法。开发了一种利用氰基染料 Cy5 和数字荧光显微镜定量估算 PET 底物表面化学可触及氨基的浓度和分布的方法。结果与讨论:在氨基浓度为 8 pmol/cm2 的情况下,PET 表面在化学修饰过程中不会出现明显的损伤,而在更高浓度的情况下,则会出现表面降解。能与 Cy5 染料共价结合的可用化学氨基基团分布不均,这可能是由于 PET 基质表面存在无定形区和结晶区。氨基基团可用于 PET 表面的进一步化学修饰、各种功能基团的接枝以及与生物大分子的共价结合,这为在生物芯片、生物传感器、片上实验室设备和其他生物技术应用中广泛使用廉价 PET 作为功能基底开辟了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generation of Active Amino Groups on the Surface of a Polyethylene Terephthalate Film and Their Quantitative Evaluation

Objective: Polyethylene terephthalate (PET) is thermally stable, biocompatible, transparent in visible and near-infrared light. The study of grafting conditions and the distribution of reactive amino groups on the PET surface without affecting the polymer array makes it possible to change the surface properties in a directed manner. Methods: A method for obtaining active amino groups on the surface of polyethylene terephthalate (PET) substrate by reaction with ethylenediamine was developed. A method for quantitative estimation of the concentration and distribution of chemically accessible amino groups on the surface of PET substrate using cyanine dye Cy5 and digital fluorescence microscopy was developed. Results and Discussion: The PET surface during chemical modification remains without visible damage up to the concentration of amino groups 8 pmol/cm2, while surface degradation is observed at higher concentrations. Chemically available amino groups capable of covalently binding to Cy5 dye are distributed unevenly, which is probably due to the presence of amorphous and crystalline areas on the surface of PET substrates. Amino groups can be used for further chemical modification of the PET surface, grafting of various functional groups, and covalent binding to biomolecules, which opens up prospects for the wide use of inexpensive PET as functional substrates in biochips, biosensors, lab-on-a-chip devices, and other biotechnological applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Bioorganic Chemistry
Russian Journal of Bioorganic Chemistry 生物-生化与分子生物学
CiteScore
1.80
自引率
10.00%
发文量
118
审稿时长
3 months
期刊介绍: Russian Journal of Bioorganic Chemistry publishes reviews and original experimental and theoretical studies on the structure, function, structure–activity relationships, and synthesis of biopolymers, such as proteins, nucleic acids, polysaccharides, mixed biopolymers, and their complexes, and low-molecular-weight biologically active compounds (peptides, sugars, lipids, antibiotics, etc.). The journal also covers selected aspects of neuro- and immunochemistry, biotechnology, and ecology.
期刊最新文献
Molecular Biological Approaches to Human Oocyte Developmental Competence Prognosis Adaptation of the Protocol of the Automated Solid-Phase Phosphoramidite Synthesis of Oligodeoxyribonucleotides for Preparing Their N-Unsubstituted Phosphoramidate Analogs (P–NH2) Acute Toxicity Evaluation of Pyridine Derivatives of 3,4-Dihydroquinoxalin-2-one and 3,4-Dihydro-2H-1,4-benzoxazin-2-one Non-Agglomerated Oligonucleotide-Containing Nanocomposites Based on Titanium Dioxide Nanoparticles Expression of the Extracellular Domain of Mouse PD-L1 and Production of Antibodies to PD-L1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1