{"title":"TiC 和 TiB2 增强材料对铝合金 AMg2 性能和结构的影响","authors":"Yu. V. Sherina, A. R. Luts, A. D. Kachura","doi":"10.1134/S2075113324701120","DOIUrl":null,"url":null,"abstract":"<p>The paper presents the results of research devoted to studying the effect of the type of reinforcing phase on the structure and properties of an aluminum matrix composite material (AMCM) obtained by the method of self-propagating high-temperature synthesis (SHS) in a melt. In the course of the research, an analysis is carried out and a choice is made to use titanium carbide and titanium diboride as reinforcing phases. During the experimental synthesis of SHS in the melt, AMg2–10% TiC and AMg2–10% TiB<sub>2</sub> composite materials are obtained. In the course of further studies, microstructural, micro-X-ray spectral, and X‑ray phase analyses have been carried out, according to the results of which it is revealed that the technology used leads to the formation of the target TiC phase in the AMg2–10% TiC composite and TiB<sub>2</sub>, Al<sub>3</sub>Ti phases in the AMg2–10% TiB<sub>2</sub> composite. On synthesized samples of composite materials, an assessment is made of physical and mechanical characteristics: hardness, porosity, and electrical conductivity. It is found that the hardness of AMCM obtained by the SHS method based on the AMg2 industrial alloy reinforced with titanium carbide is higher than the hardness of AMCM reinforced with titanium diboride by 44 MPa. Also, the porosity of the AMg2–10% TiC composite is lower than that of the AMg2–10% TiB<sub>2</sub> composite by 6%. This paper also shows the effect of heat treatment on the physical and mechanical properties of AMg2–10% TiC and AMg2–10% TiB<sub>2</sub> composite materials. Carrying out additional heating leads to an increase in the hardness values of composite materials, as well as a decrease in porosity. According to the results of a complex of studies, the use of titanium carbide is recommended as a reinforcing phase.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 5","pages":"1449 - 1456"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of TiC and TiB2 Reinforcement on the Properties and Structure of Aluminum Alloy AMg2\",\"authors\":\"Yu. V. Sherina, A. R. Luts, A. D. Kachura\",\"doi\":\"10.1134/S2075113324701120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents the results of research devoted to studying the effect of the type of reinforcing phase on the structure and properties of an aluminum matrix composite material (AMCM) obtained by the method of self-propagating high-temperature synthesis (SHS) in a melt. In the course of the research, an analysis is carried out and a choice is made to use titanium carbide and titanium diboride as reinforcing phases. During the experimental synthesis of SHS in the melt, AMg2–10% TiC and AMg2–10% TiB<sub>2</sub> composite materials are obtained. In the course of further studies, microstructural, micro-X-ray spectral, and X‑ray phase analyses have been carried out, according to the results of which it is revealed that the technology used leads to the formation of the target TiC phase in the AMg2–10% TiC composite and TiB<sub>2</sub>, Al<sub>3</sub>Ti phases in the AMg2–10% TiB<sub>2</sub> composite. On synthesized samples of composite materials, an assessment is made of physical and mechanical characteristics: hardness, porosity, and electrical conductivity. It is found that the hardness of AMCM obtained by the SHS method based on the AMg2 industrial alloy reinforced with titanium carbide is higher than the hardness of AMCM reinforced with titanium diboride by 44 MPa. Also, the porosity of the AMg2–10% TiC composite is lower than that of the AMg2–10% TiB<sub>2</sub> composite by 6%. This paper also shows the effect of heat treatment on the physical and mechanical properties of AMg2–10% TiC and AMg2–10% TiB<sub>2</sub> composite materials. Carrying out additional heating leads to an increase in the hardness values of composite materials, as well as a decrease in porosity. According to the results of a complex of studies, the use of titanium carbide is recommended as a reinforcing phase.</p>\",\"PeriodicalId\":586,\"journal\":{\"name\":\"Inorganic Materials: Applied Research\",\"volume\":\"15 5\",\"pages\":\"1449 - 1456\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials: Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2075113324701120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324701120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The Influence of TiC and TiB2 Reinforcement on the Properties and Structure of Aluminum Alloy AMg2
The paper presents the results of research devoted to studying the effect of the type of reinforcing phase on the structure and properties of an aluminum matrix composite material (AMCM) obtained by the method of self-propagating high-temperature synthesis (SHS) in a melt. In the course of the research, an analysis is carried out and a choice is made to use titanium carbide and titanium diboride as reinforcing phases. During the experimental synthesis of SHS in the melt, AMg2–10% TiC and AMg2–10% TiB2 composite materials are obtained. In the course of further studies, microstructural, micro-X-ray spectral, and X‑ray phase analyses have been carried out, according to the results of which it is revealed that the technology used leads to the formation of the target TiC phase in the AMg2–10% TiC composite and TiB2, Al3Ti phases in the AMg2–10% TiB2 composite. On synthesized samples of composite materials, an assessment is made of physical and mechanical characteristics: hardness, porosity, and electrical conductivity. It is found that the hardness of AMCM obtained by the SHS method based on the AMg2 industrial alloy reinforced with titanium carbide is higher than the hardness of AMCM reinforced with titanium diboride by 44 MPa. Also, the porosity of the AMg2–10% TiC composite is lower than that of the AMg2–10% TiB2 composite by 6%. This paper also shows the effect of heat treatment on the physical and mechanical properties of AMg2–10% TiC and AMg2–10% TiB2 composite materials. Carrying out additional heating leads to an increase in the hardness values of composite materials, as well as a decrease in porosity. According to the results of a complex of studies, the use of titanium carbide is recommended as a reinforcing phase.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.