R. D. Kapustin, V. I. Uvarov, A. O. Kirillov, A. S. Fedotov, D. Yu. Grachev, M. V. Tsodikov
{"title":"基于粗分散 αAl2O3 的高多孔陶瓷材料","authors":"R. D. Kapustin, V. I. Uvarov, A. O. Kirillov, A. S. Fedotov, D. Yu. Grachev, M. V. Tsodikov","doi":"10.1134/S2075113324701235","DOIUrl":null,"url":null,"abstract":"<p>Synthesis of highly porous ceramic materials for catalytic converters based on coarse-dispersed αAl<sub>2</sub>O<sub>3</sub> using a combination of compaction and thermochemical synthesis with the participation of active ultrafine binders is carried out. Using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM), it is established that the morphology of the synthesized material simultaneously includes large pores between filler particles (dominant αAl<sub>2</sub>O<sub>3</sub> phase) and submicron pores in transboundary regions that appeared during the processes of liquid-phase sintering and gas evolution. A significant amount of indialite (Mg<sub>2</sub>Al<sub>4</sub>Si<sub>5</sub>O<sub>18</sub>) and spinel (MgAl<sub>2</sub>O<sub>4</sub>) formed as a result of thermochemical synthesis on surfaces and in the gaps between coarse-dispersed particles is revealed. The dominant pore size (according to the volume of mercury intrusion) is from 20 to 60 μm (about 73%), as well as pores with size from 0.4 to 2 μm (about 6%).The average pore size is about 9 μm. Highly porous materials with these characteristics of the pore space can be effectively used after modification as catalytic converters for the dehydrogenation of alkyl aromatic hydrocarbons with large molecular sizes (about 400 nm) with a long mean free path on the order of ~3–4 μm.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 5","pages":"1537 - 1543"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Porous Ceramic Materials Based on Coarse-Dispersed αAl2O3\",\"authors\":\"R. D. Kapustin, V. I. Uvarov, A. O. Kirillov, A. S. Fedotov, D. Yu. Grachev, M. V. Tsodikov\",\"doi\":\"10.1134/S2075113324701235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Synthesis of highly porous ceramic materials for catalytic converters based on coarse-dispersed αAl<sub>2</sub>O<sub>3</sub> using a combination of compaction and thermochemical synthesis with the participation of active ultrafine binders is carried out. Using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM), it is established that the morphology of the synthesized material simultaneously includes large pores between filler particles (dominant αAl<sub>2</sub>O<sub>3</sub> phase) and submicron pores in transboundary regions that appeared during the processes of liquid-phase sintering and gas evolution. A significant amount of indialite (Mg<sub>2</sub>Al<sub>4</sub>Si<sub>5</sub>O<sub>18</sub>) and spinel (MgAl<sub>2</sub>O<sub>4</sub>) formed as a result of thermochemical synthesis on surfaces and in the gaps between coarse-dispersed particles is revealed. The dominant pore size (according to the volume of mercury intrusion) is from 20 to 60 μm (about 73%), as well as pores with size from 0.4 to 2 μm (about 6%).The average pore size is about 9 μm. Highly porous materials with these characteristics of the pore space can be effectively used after modification as catalytic converters for the dehydrogenation of alkyl aromatic hydrocarbons with large molecular sizes (about 400 nm) with a long mean free path on the order of ~3–4 μm.</p>\",\"PeriodicalId\":586,\"journal\":{\"name\":\"Inorganic Materials: Applied Research\",\"volume\":\"15 5\",\"pages\":\"1537 - 1543\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials: Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2075113324701235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324701235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Highly Porous Ceramic Materials Based on Coarse-Dispersed αAl2O3
Synthesis of highly porous ceramic materials for catalytic converters based on coarse-dispersed αAl2O3 using a combination of compaction and thermochemical synthesis with the participation of active ultrafine binders is carried out. Using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM), it is established that the morphology of the synthesized material simultaneously includes large pores between filler particles (dominant αAl2O3 phase) and submicron pores in transboundary regions that appeared during the processes of liquid-phase sintering and gas evolution. A significant amount of indialite (Mg2Al4Si5O18) and spinel (MgAl2O4) formed as a result of thermochemical synthesis on surfaces and in the gaps between coarse-dispersed particles is revealed. The dominant pore size (according to the volume of mercury intrusion) is from 20 to 60 μm (about 73%), as well as pores with size from 0.4 to 2 μm (about 6%).The average pore size is about 9 μm. Highly porous materials with these characteristics of the pore space can be effectively used after modification as catalytic converters for the dehydrogenation of alkyl aromatic hydrocarbons with large molecular sizes (about 400 nm) with a long mean free path on the order of ~3–4 μm.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.