{"title":"具有非局部非线性光学响应的非吸收介质中单色辐射角动量通量密度的轨道和自旋部分","authors":"P. S. Ryzhikov, V. A. Makarov","doi":"10.3103/S0027134924700619","DOIUrl":null,"url":null,"abstract":"<p>Using the conservation law for the angular momentum of electromagnetic field in the form of a balance equation, which links the angular momentum density, the angular momentum flux density, and the torque density caused by the anisotropy of the medium in a nonabsorbing medium, formulas for the densities of the orbital and spin parts of the angular momentum and the flux densities of these quantities are derived in the case of the interaction of monochromatic waves in a nonabsorbing medium with spatial dispersion that demonstrates an <span>\\(n\\)</span>th order nonlinear optical response to an external light field. In media without spatial and frequency dispersion, the obtained expressions coincide with the canonical expressions for the densities of the orbital and spin parts of the angular momentum, as well as their flux densities. Related to the nonlinearity of the medium, additional terms to the greatest components of the spin parts of the angular momentum and its flux densities can reach ten percent of the corresponding linear parts during the self-focusing of an elliptically polarized Gaussian laser beam in an isotropic gyrotropic medium near the area of its collapse.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"79 4","pages":"485 - 493"},"PeriodicalIF":0.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbital and Spin Parts of Angular Momentum Flux Density of Monochromatic Radiation in Nonabsorbing Media with Nonlocal Nonlinear Optical Response\",\"authors\":\"P. S. Ryzhikov, V. A. Makarov\",\"doi\":\"10.3103/S0027134924700619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using the conservation law for the angular momentum of electromagnetic field in the form of a balance equation, which links the angular momentum density, the angular momentum flux density, and the torque density caused by the anisotropy of the medium in a nonabsorbing medium, formulas for the densities of the orbital and spin parts of the angular momentum and the flux densities of these quantities are derived in the case of the interaction of monochromatic waves in a nonabsorbing medium with spatial dispersion that demonstrates an <span>\\\\(n\\\\)</span>th order nonlinear optical response to an external light field. In media without spatial and frequency dispersion, the obtained expressions coincide with the canonical expressions for the densities of the orbital and spin parts of the angular momentum, as well as their flux densities. Related to the nonlinearity of the medium, additional terms to the greatest components of the spin parts of the angular momentum and its flux densities can reach ten percent of the corresponding linear parts during the self-focusing of an elliptically polarized Gaussian laser beam in an isotropic gyrotropic medium near the area of its collapse.</p>\",\"PeriodicalId\":711,\"journal\":{\"name\":\"Moscow University Physics Bulletin\",\"volume\":\"79 4\",\"pages\":\"485 - 493\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Physics Bulletin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027134924700619\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134924700619","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Orbital and Spin Parts of Angular Momentum Flux Density of Monochromatic Radiation in Nonabsorbing Media with Nonlocal Nonlinear Optical Response
Using the conservation law for the angular momentum of electromagnetic field in the form of a balance equation, which links the angular momentum density, the angular momentum flux density, and the torque density caused by the anisotropy of the medium in a nonabsorbing medium, formulas for the densities of the orbital and spin parts of the angular momentum and the flux densities of these quantities are derived in the case of the interaction of monochromatic waves in a nonabsorbing medium with spatial dispersion that demonstrates an \(n\)th order nonlinear optical response to an external light field. In media without spatial and frequency dispersion, the obtained expressions coincide with the canonical expressions for the densities of the orbital and spin parts of the angular momentum, as well as their flux densities. Related to the nonlinearity of the medium, additional terms to the greatest components of the spin parts of the angular momentum and its flux densities can reach ten percent of the corresponding linear parts during the self-focusing of an elliptically polarized Gaussian laser beam in an isotropic gyrotropic medium near the area of its collapse.
期刊介绍:
Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.