基于 2,2\({}^{boldsymbol\prime}}\)-联吡啶羧酰胺的铽钐与有机配体混合络合物发光的温度变化

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY Moscow University Physics Bulletin Pub Date : 2024-10-09 DOI:10.3103/S0027134924700620
A. V. Kharcheva, K. D. Shmelkov, Yu. G. Sokolovskaya, A. V. Ivanov, N. E. Borisova, S. V. Patsaeva
{"title":"基于 2,2\\({}^{boldsymbol\\prime}}\\)-联吡啶羧酰胺的铽钐与有机配体混合络合物发光的温度变化","authors":"A. V. Kharcheva,&nbsp;K. D. Shmelkov,&nbsp;Yu. G. Sokolovskaya,&nbsp;A. V. Ivanov,&nbsp;N. E. Borisova,&nbsp;S. V. Patsaeva","doi":"10.3103/S0027134924700620","DOIUrl":null,"url":null,"abstract":"<p>Solutions in acetonitrile of three mixed complexes of rare-earth elements (terbium and samarium) with organic ligands with various pyridine substituents were studied in this work. The ratios of ligands and metals in the resulting complexes were determined, and the stability constants of samarium complexes were calculated using the spectrophotometric titration method. Measurements of absorption-, emission-, and excitation spectra of luminescence, luminescence kinetics of solutions of mixed complexes of rare-earth elements with an excess of metal relative to the ligand were carried out at various temperatures in the range 298–328 K. For the first time, an increase of luminescence intensity of a samarium ion in complex upon heating was observed. The dependences of the luminescence quantum yield and lifetime of mixed complexes on temperature were obtained. A thermometric parameter—the ratio of the integral luminescence intensities of samarium and terbium ions—was proposed, and the temperature sensitivity coefficient of this parameter was determined for different complexes.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"79 4","pages":"477 - 484"},"PeriodicalIF":0.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature Changes in Luminescence of Mixed Complexes of Terbium and Samarium with Organic Ligands Based on 2,2\\\\({}^{\\\\boldsymbol{\\\\prime}}\\\\)-bipyridylcarboxamides\",\"authors\":\"A. V. Kharcheva,&nbsp;K. D. Shmelkov,&nbsp;Yu. G. Sokolovskaya,&nbsp;A. V. Ivanov,&nbsp;N. E. Borisova,&nbsp;S. V. Patsaeva\",\"doi\":\"10.3103/S0027134924700620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solutions in acetonitrile of three mixed complexes of rare-earth elements (terbium and samarium) with organic ligands with various pyridine substituents were studied in this work. The ratios of ligands and metals in the resulting complexes were determined, and the stability constants of samarium complexes were calculated using the spectrophotometric titration method. Measurements of absorption-, emission-, and excitation spectra of luminescence, luminescence kinetics of solutions of mixed complexes of rare-earth elements with an excess of metal relative to the ligand were carried out at various temperatures in the range 298–328 K. For the first time, an increase of luminescence intensity of a samarium ion in complex upon heating was observed. The dependences of the luminescence quantum yield and lifetime of mixed complexes on temperature were obtained. A thermometric parameter—the ratio of the integral luminescence intensities of samarium and terbium ions—was proposed, and the temperature sensitivity coefficient of this parameter was determined for different complexes.</p>\",\"PeriodicalId\":711,\"journal\":{\"name\":\"Moscow University Physics Bulletin\",\"volume\":\"79 4\",\"pages\":\"477 - 484\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Physics Bulletin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0027134924700620\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134924700620","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作研究了稀土元素(铽和钐)与具有不同吡啶取代基的有机配体在乙腈中的三种混合络合物溶液。测定了所得络合物中配体和金属的比例,并使用分光光度滴定法计算了钐络合物的稳定常数。在 298-328 K 范围内的不同温度下,对金属相对于配体过量的稀土元素混合络合物溶液的发光吸收、发射和激发光谱以及发光动力学进行了测量。研究还获得了混合络合物的发光量子产率和寿命与温度的关系。提出了一个测温参数--钐离子和铽离子的积分发光强度之比,并确定了该参数对不同复合物的温度敏感系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temperature Changes in Luminescence of Mixed Complexes of Terbium and Samarium with Organic Ligands Based on 2,2\({}^{\boldsymbol{\prime}}\)-bipyridylcarboxamides

Solutions in acetonitrile of three mixed complexes of rare-earth elements (terbium and samarium) with organic ligands with various pyridine substituents were studied in this work. The ratios of ligands and metals in the resulting complexes were determined, and the stability constants of samarium complexes were calculated using the spectrophotometric titration method. Measurements of absorption-, emission-, and excitation spectra of luminescence, luminescence kinetics of solutions of mixed complexes of rare-earth elements with an excess of metal relative to the ligand were carried out at various temperatures in the range 298–328 K. For the first time, an increase of luminescence intensity of a samarium ion in complex upon heating was observed. The dependences of the luminescence quantum yield and lifetime of mixed complexes on temperature were obtained. A thermometric parameter—the ratio of the integral luminescence intensities of samarium and terbium ions—was proposed, and the temperature sensitivity coefficient of this parameter was determined for different complexes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow University Physics Bulletin
Moscow University Physics Bulletin PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
0.00%
发文量
129
审稿时长
6-12 weeks
期刊介绍: Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.
期刊最新文献
Influence of Dimensional Quantization Effects on the Effective Mass of Major Charge Carriers in LED Heterostructures with In\({}_{\boldsymbol{x}}\)Ga\({}_{\boldsymbol{1-x}}\)N/GaN Multiple Quantum Wells Is the Cyclic Model of the Universe Possible in the Relativistic Theory of Gravitation? Experimental Assessment of Magnetic Resonance Imaging Distortion for Radiation Therapy Planning Orbital and Spin Parts of Angular Momentum Flux Density of Monochromatic Radiation in Nonabsorbing Media with Nonlocal Nonlinear Optical Response Temperature Changes in Luminescence of Mixed Complexes of Terbium and Samarium with Organic Ligands Based on 2,2\({}^{\boldsymbol{\prime}}\)-bipyridylcarboxamides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1