A. V. Bratsuk, D. S. Kiselev, S. Yu. Kovtun, D. A. Zaytsev, E. N. Fedorov, A. A. Igonina, D. M. Vardanyan, A. A. Urusov
{"title":"利用水热法改性纳米二氧化钛以提高光伏电池的电气参数","authors":"A. V. Bratsuk, D. S. Kiselev, S. Yu. Kovtun, D. A. Zaytsev, E. N. Fedorov, A. A. Igonina, D. M. Vardanyan, A. A. Urusov","doi":"10.1134/S2075113324700837","DOIUrl":null,"url":null,"abstract":"<p>New technologies of microelectronics are emerging to reduce the size of devices and combine them into more compact ultralow power systems. Betavoltaic power sources (BVPSs) can serve as power generators of such order. BVPSs consist of a combination of betavoltaic cells (BVCs) based on long-lived radioisotopes of beta radiation and semiconductor converters (SCs). One of the key tasks for increasing the power of BVCs is the selection of SCs that can efficiently convert the energy of beta particles into electricity. Currently, semiconductor structures with a developed surface and a high band gap are considered to be perspective SCs. In present work, arrays of titanium dioxide nanopores (TiO<sub>2</sub> NPs) synthesized by common electrochemical anodization were chosen as a SCs. These SCs were part of BVCs based on nickel-63 with an activity of ~10 Ci/g. TiO<sub>2</sub> NPs with an amorphous structure in the composition of BVC demonstrated low electrical parameters. To increase them, we modified TiO<sub>2</sub> NPs by the hydrothermal method in a solution of Sr(OH)<sub>2</sub> with a concentration of 0.05 mol/L at various times. These experiments were carried out in order to convert TiO<sub>2</sub> (anatase) into structure-like SrTiO<sub>3</sub>. We found that the electrical parameters of the SCs increased with the duration of the modification time. The best result was obtained in the case of modification for 3 h—the BVC generated a short circuit current of 2.9 nA and open circuit voltage of 0.8 V and had a maximum power of 0.8 nW at 0.45—0.5 V. The obtained electrical parameters in combination with the miniature dimensions of the BVCs open up the potential possibility of creating a BVPS with an increased power density.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 5","pages":"1230 - 1239"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanostructured Titanium Dioxide Modification Using the Hydrothermal Method to Enhance the Electrical Parameters of Betavoltaic Cells\",\"authors\":\"A. V. Bratsuk, D. S. Kiselev, S. Yu. Kovtun, D. A. Zaytsev, E. N. Fedorov, A. A. Igonina, D. M. Vardanyan, A. A. Urusov\",\"doi\":\"10.1134/S2075113324700837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>New technologies of microelectronics are emerging to reduce the size of devices and combine them into more compact ultralow power systems. Betavoltaic power sources (BVPSs) can serve as power generators of such order. BVPSs consist of a combination of betavoltaic cells (BVCs) based on long-lived radioisotopes of beta radiation and semiconductor converters (SCs). One of the key tasks for increasing the power of BVCs is the selection of SCs that can efficiently convert the energy of beta particles into electricity. Currently, semiconductor structures with a developed surface and a high band gap are considered to be perspective SCs. In present work, arrays of titanium dioxide nanopores (TiO<sub>2</sub> NPs) synthesized by common electrochemical anodization were chosen as a SCs. These SCs were part of BVCs based on nickel-63 with an activity of ~10 Ci/g. TiO<sub>2</sub> NPs with an amorphous structure in the composition of BVC demonstrated low electrical parameters. To increase them, we modified TiO<sub>2</sub> NPs by the hydrothermal method in a solution of Sr(OH)<sub>2</sub> with a concentration of 0.05 mol/L at various times. These experiments were carried out in order to convert TiO<sub>2</sub> (anatase) into structure-like SrTiO<sub>3</sub>. We found that the electrical parameters of the SCs increased with the duration of the modification time. The best result was obtained in the case of modification for 3 h—the BVC generated a short circuit current of 2.9 nA and open circuit voltage of 0.8 V and had a maximum power of 0.8 nW at 0.45—0.5 V. The obtained electrical parameters in combination with the miniature dimensions of the BVCs open up the potential possibility of creating a BVPS with an increased power density.</p>\",\"PeriodicalId\":586,\"journal\":{\"name\":\"Inorganic Materials: Applied Research\",\"volume\":\"15 5\",\"pages\":\"1230 - 1239\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials: Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2075113324700837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324700837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanostructured Titanium Dioxide Modification Using the Hydrothermal Method to Enhance the Electrical Parameters of Betavoltaic Cells
New technologies of microelectronics are emerging to reduce the size of devices and combine them into more compact ultralow power systems. Betavoltaic power sources (BVPSs) can serve as power generators of such order. BVPSs consist of a combination of betavoltaic cells (BVCs) based on long-lived radioisotopes of beta radiation and semiconductor converters (SCs). One of the key tasks for increasing the power of BVCs is the selection of SCs that can efficiently convert the energy of beta particles into electricity. Currently, semiconductor structures with a developed surface and a high band gap are considered to be perspective SCs. In present work, arrays of titanium dioxide nanopores (TiO2 NPs) synthesized by common electrochemical anodization were chosen as a SCs. These SCs were part of BVCs based on nickel-63 with an activity of ~10 Ci/g. TiO2 NPs with an amorphous structure in the composition of BVC demonstrated low electrical parameters. To increase them, we modified TiO2 NPs by the hydrothermal method in a solution of Sr(OH)2 with a concentration of 0.05 mol/L at various times. These experiments were carried out in order to convert TiO2 (anatase) into structure-like SrTiO3. We found that the electrical parameters of the SCs increased with the duration of the modification time. The best result was obtained in the case of modification for 3 h—the BVC generated a short circuit current of 2.9 nA and open circuit voltage of 0.8 V and had a maximum power of 0.8 nW at 0.45—0.5 V. The obtained electrical parameters in combination with the miniature dimensions of the BVCs open up the potential possibility of creating a BVPS with an increased power density.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.