Yue Wang, Chao Zhou, Ying Cao, Sansar Raj Meena, Yang Feng, Yang Wang
{"title":"利用深度学习方法绘制考虑滑坡类型的滑坡易发性地图","authors":"Yue Wang, Chao Zhou, Ying Cao, Sansar Raj Meena, Yang Feng, Yang Wang","doi":"10.1007/s10064-024-03889-2","DOIUrl":null,"url":null,"abstract":"<div><p>Landslide susceptibility evaluation is pivotal for mitigating landslide risk and enhancing early warning systems. Current practices in developing Landslide Susceptibility Mapping (LSM) often overlook the diverse mechanisms of landslides, and traditional machine learning (ML) models lack the capability for autonomous feature learning in landslide contexts. This study proposes a methodology that precedes the application of deep learning algorithms for LSM by classifying landslides and selecting relevant factors based on their deformation mechanisms. In the Zigui-Badong section of the Three Gorges Reservoir area (TGRA), landslides are classified into rock landslides (RL) and soil landslides (SL) based on the geological conditions and historical landslide inventory. A comprehensive evaluation index system, comprising thirteen factors is established. To identify the most pertinent factors for each type of landslide, these factors are ranked according to their contribution to landslide occurrence. For susceptibility assessment, this study introduces a Convolutional Neural Network (CNN) model and benchmarks its performance to traditional ML models including Classification and Regression Trees (CART) and Multilayer Perceptrons (MLP). The efficacy of these models is evaluated using the Receiver Operating Characteristic (ROC) curve and various statistical analysis methods. The findings indicate that LSMs that consider different types of landslides yield more accurate and realistic outcomes. The CNN model outperformes its counterparts, with MLP being the second most effective and CART the least effective. Overall, this study demonstrates the superiority of an LSM approach that accounts for landslide diversity over traditional, monolithic methods.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing deep learning approach to develop landslide susceptibility mapping considering landslide types\",\"authors\":\"Yue Wang, Chao Zhou, Ying Cao, Sansar Raj Meena, Yang Feng, Yang Wang\",\"doi\":\"10.1007/s10064-024-03889-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Landslide susceptibility evaluation is pivotal for mitigating landslide risk and enhancing early warning systems. Current practices in developing Landslide Susceptibility Mapping (LSM) often overlook the diverse mechanisms of landslides, and traditional machine learning (ML) models lack the capability for autonomous feature learning in landslide contexts. This study proposes a methodology that precedes the application of deep learning algorithms for LSM by classifying landslides and selecting relevant factors based on their deformation mechanisms. In the Zigui-Badong section of the Three Gorges Reservoir area (TGRA), landslides are classified into rock landslides (RL) and soil landslides (SL) based on the geological conditions and historical landslide inventory. A comprehensive evaluation index system, comprising thirteen factors is established. To identify the most pertinent factors for each type of landslide, these factors are ranked according to their contribution to landslide occurrence. For susceptibility assessment, this study introduces a Convolutional Neural Network (CNN) model and benchmarks its performance to traditional ML models including Classification and Regression Trees (CART) and Multilayer Perceptrons (MLP). The efficacy of these models is evaluated using the Receiver Operating Characteristic (ROC) curve and various statistical analysis methods. The findings indicate that LSMs that consider different types of landslides yield more accurate and realistic outcomes. The CNN model outperformes its counterparts, with MLP being the second most effective and CART the least effective. Overall, this study demonstrates the superiority of an LSM approach that accounts for landslide diversity over traditional, monolithic methods.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03889-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03889-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Utilizing deep learning approach to develop landslide susceptibility mapping considering landslide types
Landslide susceptibility evaluation is pivotal for mitigating landslide risk and enhancing early warning systems. Current practices in developing Landslide Susceptibility Mapping (LSM) often overlook the diverse mechanisms of landslides, and traditional machine learning (ML) models lack the capability for autonomous feature learning in landslide contexts. This study proposes a methodology that precedes the application of deep learning algorithms for LSM by classifying landslides and selecting relevant factors based on their deformation mechanisms. In the Zigui-Badong section of the Three Gorges Reservoir area (TGRA), landslides are classified into rock landslides (RL) and soil landslides (SL) based on the geological conditions and historical landslide inventory. A comprehensive evaluation index system, comprising thirteen factors is established. To identify the most pertinent factors for each type of landslide, these factors are ranked according to their contribution to landslide occurrence. For susceptibility assessment, this study introduces a Convolutional Neural Network (CNN) model and benchmarks its performance to traditional ML models including Classification and Regression Trees (CART) and Multilayer Perceptrons (MLP). The efficacy of these models is evaluated using the Receiver Operating Characteristic (ROC) curve and various statistical analysis methods. The findings indicate that LSMs that consider different types of landslides yield more accurate and realistic outcomes. The CNN model outperformes its counterparts, with MLP being the second most effective and CART the least effective. Overall, this study demonstrates the superiority of an LSM approach that accounts for landslide diversity over traditional, monolithic methods.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.