Lorenzo Olivieri, Cinzia Giacomuzzo, Stefano Lopresti, Alessandro Francesconi
{"title":"模拟空间碎片事件","authors":"Lorenzo Olivieri, Cinzia Giacomuzzo, Stefano Lopresti, Alessandro Francesconi","doi":"10.1007/s42496-023-00186-1","DOIUrl":null,"url":null,"abstract":"<div><p>In the next years, the space debris population is expected to progressively grow due to in-space collisions and break-up events; in addition, anti-satellite tests can further affect the debris environment by generating large clouds of fragments. The simulation of these events allows identifying the main parameters affecting fragmentation and obtaining statistically accurate populations of generated debris, both above and below detection thresholds for ground-based observatories. Such information can be employed to improve current fragmentation models and to reproduce historical events to better understand their influence on the non-detectable space debris population. In addition, numerical simulation can also be used as input to identify the most critical objects to be removed to reduce the risk of irreversible orbit pollution. In this paper, the simulation of historical in-orbit fragmentation events is discussed and the generated debris populations are presented. The presented case-studies include the COSMOS-IRIDIUM collision, the COSMOS 1408 anti-satellite test, the 2022-151B CZ-6A in-orbit break-up, and a potential collision of ENVISAT with a spent rocket stage; for these events, results are presented in terms of cumulative fragments distributions and debris orbital distributions.</p></div>","PeriodicalId":100054,"journal":{"name":"Aerotecnica Missili & Spazio","volume":"103 3","pages":"225 - 232"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42496-023-00186-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Simulation of In-Space Fragmentation Events\",\"authors\":\"Lorenzo Olivieri, Cinzia Giacomuzzo, Stefano Lopresti, Alessandro Francesconi\",\"doi\":\"10.1007/s42496-023-00186-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the next years, the space debris population is expected to progressively grow due to in-space collisions and break-up events; in addition, anti-satellite tests can further affect the debris environment by generating large clouds of fragments. The simulation of these events allows identifying the main parameters affecting fragmentation and obtaining statistically accurate populations of generated debris, both above and below detection thresholds for ground-based observatories. Such information can be employed to improve current fragmentation models and to reproduce historical events to better understand their influence on the non-detectable space debris population. In addition, numerical simulation can also be used as input to identify the most critical objects to be removed to reduce the risk of irreversible orbit pollution. In this paper, the simulation of historical in-orbit fragmentation events is discussed and the generated debris populations are presented. The presented case-studies include the COSMOS-IRIDIUM collision, the COSMOS 1408 anti-satellite test, the 2022-151B CZ-6A in-orbit break-up, and a potential collision of ENVISAT with a spent rocket stage; for these events, results are presented in terms of cumulative fragments distributions and debris orbital distributions.</p></div>\",\"PeriodicalId\":100054,\"journal\":{\"name\":\"Aerotecnica Missili & Spazio\",\"volume\":\"103 3\",\"pages\":\"225 - 232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42496-023-00186-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerotecnica Missili & Spazio\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42496-023-00186-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerotecnica Missili & Spazio","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42496-023-00186-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the next years, the space debris population is expected to progressively grow due to in-space collisions and break-up events; in addition, anti-satellite tests can further affect the debris environment by generating large clouds of fragments. The simulation of these events allows identifying the main parameters affecting fragmentation and obtaining statistically accurate populations of generated debris, both above and below detection thresholds for ground-based observatories. Such information can be employed to improve current fragmentation models and to reproduce historical events to better understand their influence on the non-detectable space debris population. In addition, numerical simulation can also be used as input to identify the most critical objects to be removed to reduce the risk of irreversible orbit pollution. In this paper, the simulation of historical in-orbit fragmentation events is discussed and the generated debris populations are presented. The presented case-studies include the COSMOS-IRIDIUM collision, the COSMOS 1408 anti-satellite test, the 2022-151B CZ-6A in-orbit break-up, and a potential collision of ENVISAT with a spent rocket stage; for these events, results are presented in terms of cumulative fragments distributions and debris orbital distributions.