{"title":"流动反应器中化学过程的稳定性分析","authors":"A. A. Belyaev, A. V. Arutyunov, V. S. Arutyunov","doi":"10.1134/S0040579523050378","DOIUrl":null,"url":null,"abstract":"<p>The possibility of emergence of oscillatory conditions during a chemical process in a flow reactor with spatial inhomogeneity is analyzed. The mathematical dynamic model of the reactor takes into account molecular and convective heat- and mass-transfer processes. The problem is solved in a one-dimensional approximation under single-step chemical-reaction conditions. An analytical expression for the stability criterion of the steady-state conditions is obtained provided that the diffusion and temperature conductivity coefficients are equal. The sequence of actions upon determining the critical conditions for the stability of the system is shown. A series of numerical experiments is performed to verify the emergence of oscillatory regimes at different parameter values corresponding to real conditions in the reactor.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"57 5","pages":"861 - 868"},"PeriodicalIF":0.7000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Stability Analysis of a Chemical Process in a Flow Reactor\",\"authors\":\"A. A. Belyaev, A. V. Arutyunov, V. S. Arutyunov\",\"doi\":\"10.1134/S0040579523050378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The possibility of emergence of oscillatory conditions during a chemical process in a flow reactor with spatial inhomogeneity is analyzed. The mathematical dynamic model of the reactor takes into account molecular and convective heat- and mass-transfer processes. The problem is solved in a one-dimensional approximation under single-step chemical-reaction conditions. An analytical expression for the stability criterion of the steady-state conditions is obtained provided that the diffusion and temperature conductivity coefficients are equal. The sequence of actions upon determining the critical conditions for the stability of the system is shown. A series of numerical experiments is performed to verify the emergence of oscillatory regimes at different parameter values corresponding to real conditions in the reactor.</p>\",\"PeriodicalId\":798,\"journal\":{\"name\":\"Theoretical Foundations of Chemical Engineering\",\"volume\":\"57 5\",\"pages\":\"861 - 868\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Foundations of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040579523050378\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Foundations of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0040579523050378","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
The Stability Analysis of a Chemical Process in a Flow Reactor
The possibility of emergence of oscillatory conditions during a chemical process in a flow reactor with spatial inhomogeneity is analyzed. The mathematical dynamic model of the reactor takes into account molecular and convective heat- and mass-transfer processes. The problem is solved in a one-dimensional approximation under single-step chemical-reaction conditions. An analytical expression for the stability criterion of the steady-state conditions is obtained provided that the diffusion and temperature conductivity coefficients are equal. The sequence of actions upon determining the critical conditions for the stability of the system is shown. A series of numerical experiments is performed to verify the emergence of oscillatory regimes at different parameter values corresponding to real conditions in the reactor.
期刊介绍:
Theoretical Foundations of Chemical Engineering is a comprehensive journal covering all aspects of theoretical and applied research in chemical engineering, including transport phenomena; surface phenomena; processes of mixture separation; theory and methods of chemical reactor design; combined processes and multifunctional reactors; hydromechanic, thermal, diffusion, and chemical processes and apparatus, membrane processes and reactors; biotechnology; dispersed systems; nanotechnologies; process intensification; information modeling and analysis; energy- and resource-saving processes; environmentally clean processes and technologies.