近似间隔调度的新分区技术和更快算法

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Algorithmica Pub Date : 2024-07-18 DOI:10.1007/s00453-024-01252-1
Spencer Compton, Slobodan Mitrović, Ronitt Rubinfeld
{"title":"近似间隔调度的新分区技术和更快算法","authors":"Spencer Compton,&nbsp;Slobodan Mitrović,&nbsp;Ronitt Rubinfeld","doi":"10.1007/s00453-024-01252-1","DOIUrl":null,"url":null,"abstract":"<div><p>Interval scheduling is a basic algorithmic problem and a classical task in combinatorial optimization. We develop techniques for partitioning and grouping jobs based on their starting/ending times, enabling us to view an instance of interval scheduling on <i>many</i> jobs as a union of multiple interval scheduling instances, each containing only <i>a few</i> jobs. Instantiating these techniques in a dynamic setting produces several new results. For <span>\\((1+\\varepsilon )\\)</span>-approximation of job scheduling of <i>n</i> jobs on a single machine, we develop a fully dynamic algorithm with <span>\\(O(\\nicefrac {\\log {n}}{\\varepsilon })\\)</span> update and <span>\\(O(\\log {n})\\)</span> query worst-case time. Our techniques are also applicable in a setting where jobs have weights. We design a fully dynamic <i>deterministic</i> algorithm whose worst-case update and query times are <span>\\(\\text {poly} (\\log n,\\frac{1}{\\varepsilon })\\)</span>. This is <i>the first</i> algorithm that maintains a <span>\\((1+\\varepsilon )\\)</span>-approximation of the maximum independent set of a collection of weighted intervals in <span>\\(\\text {poly} (\\log n,\\frac{1}{\\varepsilon })\\)</span> time updates/queries. This is an exponential improvement in <span>\\(1/\\varepsilon \\)</span> over the running time of an algorithm of Henzinger, Neumann, and Wiese  [SoCG, 2020]. Our approach also removes all dependence on the values of the jobs’ starting/ending times and weights.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 9","pages":"2997 - 3026"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Partitioning Techniques and Faster Algorithms for Approximate Interval Scheduling\",\"authors\":\"Spencer Compton,&nbsp;Slobodan Mitrović,&nbsp;Ronitt Rubinfeld\",\"doi\":\"10.1007/s00453-024-01252-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Interval scheduling is a basic algorithmic problem and a classical task in combinatorial optimization. We develop techniques for partitioning and grouping jobs based on their starting/ending times, enabling us to view an instance of interval scheduling on <i>many</i> jobs as a union of multiple interval scheduling instances, each containing only <i>a few</i> jobs. Instantiating these techniques in a dynamic setting produces several new results. For <span>\\\\((1+\\\\varepsilon )\\\\)</span>-approximation of job scheduling of <i>n</i> jobs on a single machine, we develop a fully dynamic algorithm with <span>\\\\(O(\\\\nicefrac {\\\\log {n}}{\\\\varepsilon })\\\\)</span> update and <span>\\\\(O(\\\\log {n})\\\\)</span> query worst-case time. Our techniques are also applicable in a setting where jobs have weights. We design a fully dynamic <i>deterministic</i> algorithm whose worst-case update and query times are <span>\\\\(\\\\text {poly} (\\\\log n,\\\\frac{1}{\\\\varepsilon })\\\\)</span>. This is <i>the first</i> algorithm that maintains a <span>\\\\((1+\\\\varepsilon )\\\\)</span>-approximation of the maximum independent set of a collection of weighted intervals in <span>\\\\(\\\\text {poly} (\\\\log n,\\\\frac{1}{\\\\varepsilon })\\\\)</span> time updates/queries. This is an exponential improvement in <span>\\\\(1/\\\\varepsilon \\\\)</span> over the running time of an algorithm of Henzinger, Neumann, and Wiese  [SoCG, 2020]. Our approach also removes all dependence on the values of the jobs’ starting/ending times and weights.</p></div>\",\"PeriodicalId\":50824,\"journal\":{\"name\":\"Algorithmica\",\"volume\":\"86 9\",\"pages\":\"2997 - 3026\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00453-024-01252-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-024-01252-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

间隔调度是一个基本算法问题,也是组合优化中的一项经典任务。我们开发了根据作业的开始/结束时间对作业进行分区和分组的技术,这样我们就能把一个包含许多作业的间隔调度实例看作是多个间隔调度实例的联合,每个实例只包含几个作业。在动态环境中应用这些技术会产生一些新的结果。对于单台机器上n个作业的((1+\varepsilon))近似作业调度,我们开发了一种全动态算法,其更新时间为(O(\nicefrac {\log {n}}{\varepsilon }),查询最坏情况时间为(O(\log {n}))。我们的技术也适用于工作有权重的情况。我们设计了一种全动态的确定性算法,其最坏情况下的更新和查询时间为(\text {poly} (\log n,\frac{1}{\varepsilon })\)。这是第一个在更新/查询时间内保持加权区间集合的最大独立集的((1+\varepsilon ))近似值的算法。与 Henzinger、Neumann 和 Wiese [SoCG, 2020] 算法的运行时间相比,这是指数级的(1/\varepsilon \)改进。我们的方法还消除了对作业开始/结束时间和权重值的所有依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Partitioning Techniques and Faster Algorithms for Approximate Interval Scheduling

Interval scheduling is a basic algorithmic problem and a classical task in combinatorial optimization. We develop techniques for partitioning and grouping jobs based on their starting/ending times, enabling us to view an instance of interval scheduling on many jobs as a union of multiple interval scheduling instances, each containing only a few jobs. Instantiating these techniques in a dynamic setting produces several new results. For \((1+\varepsilon )\)-approximation of job scheduling of n jobs on a single machine, we develop a fully dynamic algorithm with \(O(\nicefrac {\log {n}}{\varepsilon })\) update and \(O(\log {n})\) query worst-case time. Our techniques are also applicable in a setting where jobs have weights. We design a fully dynamic deterministic algorithm whose worst-case update and query times are \(\text {poly} (\log n,\frac{1}{\varepsilon })\). This is the first algorithm that maintains a \((1+\varepsilon )\)-approximation of the maximum independent set of a collection of weighted intervals in \(\text {poly} (\log n,\frac{1}{\varepsilon })\) time updates/queries. This is an exponential improvement in \(1/\varepsilon \) over the running time of an algorithm of Henzinger, Neumann, and Wiese  [SoCG, 2020]. Our approach also removes all dependence on the values of the jobs’ starting/ending times and weights.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
期刊最新文献
Better Hardness Results for the Minimum Spanning Tree Congestion Problem Euclidean Maximum Matchings in the Plane—Local to Global Online Paging with Heterogeneous Cache Slots Anti-factor is FPT Parameterized by Treewidth and List Size (but Counting is Hard) Energy Constrained Depth First Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1