A. V. Filippov, N. N. Shamarin, N. V. Semenchuk, E. O. Filippova
{"title":"电子束增材制造后 Cu-Al、Cu-Al-Si 和 Cu-Al-Si-Mn 系统铝青铜中超细晶粒微结构的形成","authors":"A. V. Filippov, N. N. Shamarin, N. V. Semenchuk, E. O. Filippova","doi":"10.1007/s11182-024-03255-5","DOIUrl":null,"url":null,"abstract":"<p>The results of experimental studies on the formation of an ultrafine-grained structure in aluminum bronzes printed using multi-wire electron beam additive manufacturing technology are presented. Based on the mechanical tests, the influence of the filament and heat treatment on the printed sample properties is established. A possibility of forming an ultrafine-grained structure in the studied alloys by multi-sided forging and rolling is demonstrated.</p>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"67 9","pages":"1364 - 1372"},"PeriodicalIF":0.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of Ultra Fine Grained Microstructure in Aluminum Bronzes of the Cu-Al, Cu-Al-Si, and Cu-Al-Si-Mn Systems After Electron Beam Additive Manufacturing\",\"authors\":\"A. V. Filippov, N. N. Shamarin, N. V. Semenchuk, E. O. Filippova\",\"doi\":\"10.1007/s11182-024-03255-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The results of experimental studies on the formation of an ultrafine-grained structure in aluminum bronzes printed using multi-wire electron beam additive manufacturing technology are presented. Based on the mechanical tests, the influence of the filament and heat treatment on the printed sample properties is established. A possibility of forming an ultrafine-grained structure in the studied alloys by multi-sided forging and rolling is demonstrated.</p>\",\"PeriodicalId\":770,\"journal\":{\"name\":\"Russian Physics Journal\",\"volume\":\"67 9\",\"pages\":\"1364 - 1372\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Physics Journal\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11182-024-03255-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03255-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Formation of Ultra Fine Grained Microstructure in Aluminum Bronzes of the Cu-Al, Cu-Al-Si, and Cu-Al-Si-Mn Systems After Electron Beam Additive Manufacturing
The results of experimental studies on the formation of an ultrafine-grained structure in aluminum bronzes printed using multi-wire electron beam additive manufacturing technology are presented. Based on the mechanical tests, the influence of the filament and heat treatment on the printed sample properties is established. A possibility of forming an ultrafine-grained structure in the studied alloys by multi-sided forging and rolling is demonstrated.
期刊介绍:
Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.