{"title":"碳酸铵从盐酸溶液中分馏沉淀稀土金属和锰","authors":"D. G. Agafonov, G. B. Sadykhov, T. V. Olyunina","doi":"10.1134/S0036029523110022","DOIUrl":null,"url":null,"abstract":"<p>The possibility of using the fractional precipitation of rare-earth metals (REMs) and manganese from hydrochloric acid solutions by ammonium carbonate is considered. Specific features of the behavior of elements during precipitation, which are necessary to know when preparing selective REM and manganese concentrates, have been revealed. At pH 5.25, 85% ΣTR<sub>2</sub>O<sub>3</sub> pass to a deposit (in the oxide formula, ΣTR is the commonly accepted international designation of REMs), and the REM content is 60.5%. At pH 5.25–7.4, 92% manganese are extracted to a manganese concentrate, and the MnO content in the concentrate reaches 70.7%. The complicated chemical composition of the solution requires three-stage fractional precipitation for preparing qualitative selective concentrates: iron and thorium should be precipitated as a cake at the first stage, and REMs and manganese should be precipitated at the second and third stages, respectively. This makes it possible to form deactivated concentrates in the form of carbonates suitable for the further extraction of REMs and manganese by the well-known methods.</p>","PeriodicalId":769,"journal":{"name":"Russian Metallurgy (Metally)","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Precipitation of Rare-Earth Metals and Manganese from Hydrochloric Acid Solutions by Ammonium Carbonate\",\"authors\":\"D. G. Agafonov, G. B. Sadykhov, T. V. Olyunina\",\"doi\":\"10.1134/S0036029523110022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The possibility of using the fractional precipitation of rare-earth metals (REMs) and manganese from hydrochloric acid solutions by ammonium carbonate is considered. Specific features of the behavior of elements during precipitation, which are necessary to know when preparing selective REM and manganese concentrates, have been revealed. At pH 5.25, 85% ΣTR<sub>2</sub>O<sub>3</sub> pass to a deposit (in the oxide formula, ΣTR is the commonly accepted international designation of REMs), and the REM content is 60.5%. At pH 5.25–7.4, 92% manganese are extracted to a manganese concentrate, and the MnO content in the concentrate reaches 70.7%. The complicated chemical composition of the solution requires three-stage fractional precipitation for preparing qualitative selective concentrates: iron and thorium should be precipitated as a cake at the first stage, and REMs and manganese should be precipitated at the second and third stages, respectively. This makes it possible to form deactivated concentrates in the form of carbonates suitable for the further extraction of REMs and manganese by the well-known methods.</p>\",\"PeriodicalId\":769,\"journal\":{\"name\":\"Russian Metallurgy (Metally)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Metallurgy (Metally)\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0036029523110022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Metallurgy (Metally)","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0036029523110022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Fractional Precipitation of Rare-Earth Metals and Manganese from Hydrochloric Acid Solutions by Ammonium Carbonate
The possibility of using the fractional precipitation of rare-earth metals (REMs) and manganese from hydrochloric acid solutions by ammonium carbonate is considered. Specific features of the behavior of elements during precipitation, which are necessary to know when preparing selective REM and manganese concentrates, have been revealed. At pH 5.25, 85% ΣTR2O3 pass to a deposit (in the oxide formula, ΣTR is the commonly accepted international designation of REMs), and the REM content is 60.5%. At pH 5.25–7.4, 92% manganese are extracted to a manganese concentrate, and the MnO content in the concentrate reaches 70.7%. The complicated chemical composition of the solution requires three-stage fractional precipitation for preparing qualitative selective concentrates: iron and thorium should be precipitated as a cake at the first stage, and REMs and manganese should be precipitated at the second and third stages, respectively. This makes it possible to form deactivated concentrates in the form of carbonates suitable for the further extraction of REMs and manganese by the well-known methods.
期刊介绍:
Russian Metallurgy (Metally) publishes results of original experimental and theoretical research in the form of reviews and regular articles devoted to topical problems of metallurgy, physical metallurgy, and treatment of ferrous, nonferrous, rare, and other metals and alloys, intermetallic compounds, and metallic composite materials. The journal focuses on physicochemical properties of metallurgical materials (ores, slags, matters, and melts of metals and alloys); physicochemical processes (thermodynamics and kinetics of pyrometallurgical, hydrometallurgical, electrochemical, and other processes); theoretical metallurgy; metal forming; thermoplastic and thermochemical treatment; computation and experimental determination of phase diagrams and thermokinetic diagrams; mechanisms and kinetics of phase transitions in metallic materials; relations between the chemical composition, phase and structural states of materials and their physicochemical and service properties; interaction between metallic materials and external media; and effects of radiation on these materials.