L. N. Stepanova, V. A. Bataev, V. V. Chernova, S. V. Sheifer
{"title":"成型方法对静态载荷下 AFM 碳纤维样品缺陷的影响","authors":"L. N. Stepanova, V. A. Bataev, V. V. Chernova, S. V. Sheifer","doi":"10.1134/S1061830924700670","DOIUrl":null,"url":null,"abstract":"<p>Static tests of AFM carbon fiber samples made by autoclave and vacuum molding methods were carried out. Acoustic (acoustic emission and ultrasonic) methods, strain gauging, and microanalysis of thin sections were used to test for defects. The location of acoustic emission signals in the area of stress raisers made it possible to establish that the number of defects in autoclave molding is ten times less than under vacuum molding. Ultrasonic and acoustic emission methods, strain gauging, and microanalysis allowed determining the structure of AFM carbon fiber, the coordinates of defects, and their type. During the testing of unloaded samples made by vacuum molding, manufacturing defects were found that grew in size during static stretching and led to the occurrence of new destructions. No manufacturing defects were found in the samples produced by autoclave molding. Microanalysis of samples produced by the vacuum method revealed defects associated with fiber destruction, matrix cracking, and delamination. Tests of samples prepared by autoclave molding have shown that there are practically no defects in them.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":"60 6","pages":"591 - 601"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Molding Methods on Defects in AFM Carbon Fiber Samples under Static Loading\",\"authors\":\"L. N. Stepanova, V. A. Bataev, V. V. Chernova, S. V. Sheifer\",\"doi\":\"10.1134/S1061830924700670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Static tests of AFM carbon fiber samples made by autoclave and vacuum molding methods were carried out. Acoustic (acoustic emission and ultrasonic) methods, strain gauging, and microanalysis of thin sections were used to test for defects. The location of acoustic emission signals in the area of stress raisers made it possible to establish that the number of defects in autoclave molding is ten times less than under vacuum molding. Ultrasonic and acoustic emission methods, strain gauging, and microanalysis allowed determining the structure of AFM carbon fiber, the coordinates of defects, and their type. During the testing of unloaded samples made by vacuum molding, manufacturing defects were found that grew in size during static stretching and led to the occurrence of new destructions. No manufacturing defects were found in the samples produced by autoclave molding. Microanalysis of samples produced by the vacuum method revealed defects associated with fiber destruction, matrix cracking, and delamination. Tests of samples prepared by autoclave molding have shown that there are practically no defects in them.</p>\",\"PeriodicalId\":764,\"journal\":{\"name\":\"Russian Journal of Nondestructive Testing\",\"volume\":\"60 6\",\"pages\":\"591 - 601\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Nondestructive Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061830924700670\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830924700670","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Influence of Molding Methods on Defects in AFM Carbon Fiber Samples under Static Loading
Static tests of AFM carbon fiber samples made by autoclave and vacuum molding methods were carried out. Acoustic (acoustic emission and ultrasonic) methods, strain gauging, and microanalysis of thin sections were used to test for defects. The location of acoustic emission signals in the area of stress raisers made it possible to establish that the number of defects in autoclave molding is ten times less than under vacuum molding. Ultrasonic and acoustic emission methods, strain gauging, and microanalysis allowed determining the structure of AFM carbon fiber, the coordinates of defects, and their type. During the testing of unloaded samples made by vacuum molding, manufacturing defects were found that grew in size during static stretching and led to the occurrence of new destructions. No manufacturing defects were found in the samples produced by autoclave molding. Microanalysis of samples produced by the vacuum method revealed defects associated with fiber destruction, matrix cracking, and delamination. Tests of samples prepared by autoclave molding have shown that there are practically no defects in them.
期刊介绍:
Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).