{"title":"掺杂过渡金属离子(钴和锰)的钛酸锶钡(BST)铁电陶瓷的合成、形貌和光学特性对增强光电器件应用的影响","authors":"Mikanshi Chaudhary, Shilpi Jindal, Sheela Devi","doi":"10.1007/s12034-024-03314-0","DOIUrl":null,"url":null,"abstract":"<div><p>Barium strontium titanate (BST) is a perovskite material, which is used directly in various applications including thermistors, electromechanical actuators, sensors and ceramic capacitors. Here, we have investigated the impact of dopant (Mn and Co) on synthesized BST nanoparticles and its morphological, structural, vibrational and optical properties have been investigated through scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence (PL), FTIR and Raman spectroscopies. SEM image showed the nearly spherical grain for pure BST and doped (Mn and Co) BST samples. The estimated particles were strongly influenced by different dopants, in addition, Mn-doped BST showed maximum grain growth for pure and Co-doped BST samples. XRD patterns have been employed to investigate the microstructural parameters (phase, lattice, crystallite size, strain, dislocation density, etc.). The crystallite sizes have been estimated using the Scherrer formula, showing maximum crystallite size for Mn-doped BST ceramics. Recorded FTIR spectra showed the transmission peak, which is centred at wavenumber of 470 cm<sup>−1</sup> (pure BST), was shifted to 1250 cm<sup>−1</sup> with Mn-doped BST. Raman spectra exhibited the increased number of modes from pure BST to Mn-doped BST sample. PL showed the emissions bands, which were observed at 602–659 nm. Here, the peak shifted towards higher wavelength from pure BST to Mn-doped BST (red shifting from pure to Mn-doped BST). It revealed that the prepared samples can be employed as suitable photoluminar material.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, morphological and optical properties impact on transition metal ion (Co and Mn)-doped barium strontium titanate (BST) ferroelectric ceramics towards enhanced optoelectronic device applications\",\"authors\":\"Mikanshi Chaudhary, Shilpi Jindal, Sheela Devi\",\"doi\":\"10.1007/s12034-024-03314-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Barium strontium titanate (BST) is a perovskite material, which is used directly in various applications including thermistors, electromechanical actuators, sensors and ceramic capacitors. Here, we have investigated the impact of dopant (Mn and Co) on synthesized BST nanoparticles and its morphological, structural, vibrational and optical properties have been investigated through scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence (PL), FTIR and Raman spectroscopies. SEM image showed the nearly spherical grain for pure BST and doped (Mn and Co) BST samples. The estimated particles were strongly influenced by different dopants, in addition, Mn-doped BST showed maximum grain growth for pure and Co-doped BST samples. XRD patterns have been employed to investigate the microstructural parameters (phase, lattice, crystallite size, strain, dislocation density, etc.). The crystallite sizes have been estimated using the Scherrer formula, showing maximum crystallite size for Mn-doped BST ceramics. Recorded FTIR spectra showed the transmission peak, which is centred at wavenumber of 470 cm<sup>−1</sup> (pure BST), was shifted to 1250 cm<sup>−1</sup> with Mn-doped BST. Raman spectra exhibited the increased number of modes from pure BST to Mn-doped BST sample. PL showed the emissions bands, which were observed at 602–659 nm. Here, the peak shifted towards higher wavelength from pure BST to Mn-doped BST (red shifting from pure to Mn-doped BST). It revealed that the prepared samples can be employed as suitable photoluminar material.</p></div>\",\"PeriodicalId\":502,\"journal\":{\"name\":\"Bulletin of Materials Science\",\"volume\":\"47 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12034-024-03314-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03314-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis, morphological and optical properties impact on transition metal ion (Co and Mn)-doped barium strontium titanate (BST) ferroelectric ceramics towards enhanced optoelectronic device applications
Barium strontium titanate (BST) is a perovskite material, which is used directly in various applications including thermistors, electromechanical actuators, sensors and ceramic capacitors. Here, we have investigated the impact of dopant (Mn and Co) on synthesized BST nanoparticles and its morphological, structural, vibrational and optical properties have been investigated through scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence (PL), FTIR and Raman spectroscopies. SEM image showed the nearly spherical grain for pure BST and doped (Mn and Co) BST samples. The estimated particles were strongly influenced by different dopants, in addition, Mn-doped BST showed maximum grain growth for pure and Co-doped BST samples. XRD patterns have been employed to investigate the microstructural parameters (phase, lattice, crystallite size, strain, dislocation density, etc.). The crystallite sizes have been estimated using the Scherrer formula, showing maximum crystallite size for Mn-doped BST ceramics. Recorded FTIR spectra showed the transmission peak, which is centred at wavenumber of 470 cm−1 (pure BST), was shifted to 1250 cm−1 with Mn-doped BST. Raman spectra exhibited the increased number of modes from pure BST to Mn-doped BST sample. PL showed the emissions bands, which were observed at 602–659 nm. Here, the peak shifted towards higher wavelength from pure BST to Mn-doped BST (red shifting from pure to Mn-doped BST). It revealed that the prepared samples can be employed as suitable photoluminar material.
期刊介绍:
The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.