N Taguida, S Benlamari, M Gasmi, F Chouit, H Meradji, S Ghemid, Z Chouahda, R Khenata, S A Tahir, R Ahmed
{"title":"关于 CdSiP2、CdSnP2 及其混合晶体 CdSi1-xSnxP2 的结构、电子和热特性的研究","authors":"N Taguida, S Benlamari, M Gasmi, F Chouit, H Meradji, S Ghemid, Z Chouahda, R Khenata, S A Tahir, R Ahmed","doi":"10.1007/s12034-024-03330-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this investigation, we employ density functional theory with the generalized gradient approximation of Wu–Cohen and the modified Beck–Johnson approach. Our focus is on examining the structural, electronic and thermodynamic properties of ternary chalcopyrite CdXP<sub>2</sub> (X: Si and Sn) compounds. Our computed results of ternary structures for structural properties, for instance, tetragonal distortion, equilibrium lattice constants and bond lengths, show good agreement with the available results of the experimental and theoretical calculations. Our calculated positive results of cohesive energy and negative values of the formation energies of the title materials show their thermodynamic stability as well as highlight their possible experimental fabrication at these concentrations. From band structure calculations, it is found that the energy bandgap is of direct nature at Γ–Γ symmetry points for both ternary and quaternary alloys; however, the width of the bandgap is found to be decreased with increasing Sn concentration in the CdSi<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>P<sub>2</sub> alloys. Moreover, thermodynamic properties using the quasi-harmonic Debye model are also computed. Our study provides a platform for further experimental and theoretical investigations to expose the potential of these materials for their applications.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on the structural, electronic and thermal properties of CdSiP2, CdSnP2 and their mixed crystals CdSi1–xSnxP2\",\"authors\":\"N Taguida, S Benlamari, M Gasmi, F Chouit, H Meradji, S Ghemid, Z Chouahda, R Khenata, S A Tahir, R Ahmed\",\"doi\":\"10.1007/s12034-024-03330-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this investigation, we employ density functional theory with the generalized gradient approximation of Wu–Cohen and the modified Beck–Johnson approach. Our focus is on examining the structural, electronic and thermodynamic properties of ternary chalcopyrite CdXP<sub>2</sub> (X: Si and Sn) compounds. Our computed results of ternary structures for structural properties, for instance, tetragonal distortion, equilibrium lattice constants and bond lengths, show good agreement with the available results of the experimental and theoretical calculations. Our calculated positive results of cohesive energy and negative values of the formation energies of the title materials show their thermodynamic stability as well as highlight their possible experimental fabrication at these concentrations. From band structure calculations, it is found that the energy bandgap is of direct nature at Γ–Γ symmetry points for both ternary and quaternary alloys; however, the width of the bandgap is found to be decreased with increasing Sn concentration in the CdSi<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>P<sub>2</sub> alloys. Moreover, thermodynamic properties using the quasi-harmonic Debye model are also computed. Our study provides a platform for further experimental and theoretical investigations to expose the potential of these materials for their applications.</p></div>\",\"PeriodicalId\":502,\"journal\":{\"name\":\"Bulletin of Materials Science\",\"volume\":\"47 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12034-024-03330-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03330-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A study on the structural, electronic and thermal properties of CdSiP2, CdSnP2 and their mixed crystals CdSi1–xSnxP2
In this investigation, we employ density functional theory with the generalized gradient approximation of Wu–Cohen and the modified Beck–Johnson approach. Our focus is on examining the structural, electronic and thermodynamic properties of ternary chalcopyrite CdXP2 (X: Si and Sn) compounds. Our computed results of ternary structures for structural properties, for instance, tetragonal distortion, equilibrium lattice constants and bond lengths, show good agreement with the available results of the experimental and theoretical calculations. Our calculated positive results of cohesive energy and negative values of the formation energies of the title materials show their thermodynamic stability as well as highlight their possible experimental fabrication at these concentrations. From band structure calculations, it is found that the energy bandgap is of direct nature at Γ–Γ symmetry points for both ternary and quaternary alloys; however, the width of the bandgap is found to be decreased with increasing Sn concentration in the CdSi1–xSnxP2 alloys. Moreover, thermodynamic properties using the quasi-harmonic Debye model are also computed. Our study provides a platform for further experimental and theoretical investigations to expose the potential of these materials for their applications.
期刊介绍:
The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.