基于分子印迹聚合物的电化学传感器用于检测莫西沙星

IF 1.1 4区 工程技术 Q4 ELECTROCHEMISTRY Russian Journal of Electrochemistry Pub Date : 2024-09-25 DOI:10.1134/S1023193524700320
Memoona Shakoor, Nauman Sadiq, Muafia Akbar, Muhammad Shafique, Ghulam Mustafa
{"title":"基于分子印迹聚合物的电化学传感器用于检测莫西沙星","authors":"Memoona Shakoor,&nbsp;Nauman Sadiq,&nbsp;Muafia Akbar,&nbsp;Muhammad Shafique,&nbsp;Ghulam Mustafa","doi":"10.1134/S1023193524700320","DOIUrl":null,"url":null,"abstract":"<p>Moxifloxacin evaluation in pharmaceuticals and biological fluids is in high demand. It is important to fabricate a simple, sensitive, selective, miniaturized, and cost-effective chemical sensor to detect moxifloxacin in the environment. In this study, an electrochemical sensor based on molecularly imprinted polymer (MIP) was fabricated for the detection of moxifloxacin in which interdigital electrodes (IDEs) were used as transducers. Thermal free-radical bulk polymerization was used to synthesize MIP, methacrylic acid (MAA) was used as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, azobisisobutyronitrile (AIBN) as a free radical initiator, and dimethyl sulfoxide (DMSO) as a porogenic solvent in a poly (methacrylic acid) system for efficient recognition. The LCR meter was used to measure various electrical properties such as inductance and resistance. A concentration-dependent linear response was observed by the fabricated sensor having a lower limit of detection of 240 and 63 ppb for series and parallel resistance, respectively. Meanwhile, series and parallel inductance had lower detection limits of 48 and 8 ppb, respectively. Furthermore, in the presence of competing agents such as uric acid, ascorbic acid, and paracetamol, the fabricated sensor showed a selective response for moxifloxacin. The fabricated sensor also showed reversible and reproducible response.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 9","pages":"728 - 736"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Sensor Based on Molecularly Imprinted Polymer for the Detection of Moxifloxacin\",\"authors\":\"Memoona Shakoor,&nbsp;Nauman Sadiq,&nbsp;Muafia Akbar,&nbsp;Muhammad Shafique,&nbsp;Ghulam Mustafa\",\"doi\":\"10.1134/S1023193524700320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Moxifloxacin evaluation in pharmaceuticals and biological fluids is in high demand. It is important to fabricate a simple, sensitive, selective, miniaturized, and cost-effective chemical sensor to detect moxifloxacin in the environment. In this study, an electrochemical sensor based on molecularly imprinted polymer (MIP) was fabricated for the detection of moxifloxacin in which interdigital electrodes (IDEs) were used as transducers. Thermal free-radical bulk polymerization was used to synthesize MIP, methacrylic acid (MAA) was used as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, azobisisobutyronitrile (AIBN) as a free radical initiator, and dimethyl sulfoxide (DMSO) as a porogenic solvent in a poly (methacrylic acid) system for efficient recognition. The LCR meter was used to measure various electrical properties such as inductance and resistance. A concentration-dependent linear response was observed by the fabricated sensor having a lower limit of detection of 240 and 63 ppb for series and parallel resistance, respectively. Meanwhile, series and parallel inductance had lower detection limits of 48 and 8 ppb, respectively. Furthermore, in the presence of competing agents such as uric acid, ascorbic acid, and paracetamol, the fabricated sensor showed a selective response for moxifloxacin. The fabricated sensor also showed reversible and reproducible response.</p>\",\"PeriodicalId\":760,\"journal\":{\"name\":\"Russian Journal of Electrochemistry\",\"volume\":\"60 9\",\"pages\":\"728 - 736\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1023193524700320\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1023193524700320","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

药品和生物液体中莫西沙星的评估需求量很大。因此,制造一种简单、灵敏、选择性强、微型化且经济高效的化学传感器来检测环境中的莫西沙星非常重要。本研究以分子印迹聚合物(MIP)为基础,制作了一种用于检测莫西沙星的电化学传感器。热自由基批量聚合法用于合成 MIP,甲基丙烯酸(MAA)用作功能单体,乙二醇二甲基丙烯酸酯(EGDMA)用作交联剂,偶氮二异丁腈(AIBN)用作自由基引发剂,二甲基亚砜(DMSO)用作聚(甲基丙烯酸)体系中的致孔溶剂,以实现高效识别。使用 LCR 计测量电感和电阻等各种电特性。制备的传感器具有与浓度相关的线性响应,串联电阻和并联电阻的检测下限分别为 240 ppb 和 63 ppb。同时,串联和并联电感的检测下限分别为 48 和 8 ppb。此外,在尿酸、抗坏血酸和扑热息痛等竞争药剂存在的情况下,制备的传感器对莫西沙星具有选择性响应。制作的传感器还显示出可逆和可重现的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemical Sensor Based on Molecularly Imprinted Polymer for the Detection of Moxifloxacin

Moxifloxacin evaluation in pharmaceuticals and biological fluids is in high demand. It is important to fabricate a simple, sensitive, selective, miniaturized, and cost-effective chemical sensor to detect moxifloxacin in the environment. In this study, an electrochemical sensor based on molecularly imprinted polymer (MIP) was fabricated for the detection of moxifloxacin in which interdigital electrodes (IDEs) were used as transducers. Thermal free-radical bulk polymerization was used to synthesize MIP, methacrylic acid (MAA) was used as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, azobisisobutyronitrile (AIBN) as a free radical initiator, and dimethyl sulfoxide (DMSO) as a porogenic solvent in a poly (methacrylic acid) system for efficient recognition. The LCR meter was used to measure various electrical properties such as inductance and resistance. A concentration-dependent linear response was observed by the fabricated sensor having a lower limit of detection of 240 and 63 ppb for series and parallel resistance, respectively. Meanwhile, series and parallel inductance had lower detection limits of 48 and 8 ppb, respectively. Furthermore, in the presence of competing agents such as uric acid, ascorbic acid, and paracetamol, the fabricated sensor showed a selective response for moxifloxacin. The fabricated sensor also showed reversible and reproducible response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Electrochemistry
Russian Journal of Electrochemistry 工程技术-电化学
CiteScore
1.90
自引率
8.30%
发文量
102
审稿时长
6 months
期刊介绍: Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.
期刊最新文献
Role of Nonlocal Electrostatic Effects in the Stabilization of Monovalent Cations in an Aqueous Cavity Surrounded by a Weakly Polar Environment Electrodeposited Composite of Poly-3,4-ethylenedioxythiophene with Fullerenol Photoactive in the Near-IR Range Dimethylglyoximate Derived Nickel Oxide Nanowires for Trace Level Amperometric Detection of Hydroquinone Research Progress of Cobalt Based Phosphide Anode Materials for Sodium-Ion Batteries Electric Double Layer Capacitors: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1