{"title":"通过考虑骨基质的压电性对骨细胞模型进行生物力学分析","authors":"Xiyu Wang \n (, ), Zhengbiao Yang \n (, ), Yanru Xue \n (, ), Yixian Qin \n (, ), Meng Zhang \n (, ), Jing Chen \n (, ), Pengcui Li \n (, ), Xiaochun Wei \n (, ), Haoyu Feng \n (, ), Liming He \n (, ), Yanqin Wang \n (, ), Xiaogang Wu \n (, ), Weiyi Chen \n (, )","doi":"10.1007/s10409-024-23533-x","DOIUrl":null,"url":null,"abstract":"<div><p>Osteocytes, the primary cells in bone, play a crucial role in sensing external load environments and regulating other bone cells. Due to the piezoelectric effect of the mineralized matrix and collagen that make up bone, the mechanical stimulus received is converted into an electrical stimulus to affect the reconstruction of bone. Despite the importance of osteocyte, many studies have focused on the mechanical loading and fluid flow of it, there is still a gap in the study of the piezoelectric effects of various mechanosensors on the microscale. In this paper, we developed a finite element model of osteocytes that incorporates the piezoelectric bone matrix. This model is comprehensive, comprising the osteocyte cell body enclosed by lacuna, osteocyte processes enclosed by canaliculi, and the interposed charged ionic fluid. Additionally, it features mechanosensors such as collagen hillocks and primary cilia. In our study, we subjected the piezoelectric bone matrix model to triaxial displacement, subsequently assessing the electrical signal variations across different mechanosensors within the osteocyte. The observed disparities in mechanical perception by various mechanosensors were primarily attributable to greater liquid velocity changes in the polarization direction as opposed to other directions. Collagen hillocks showed insensitivity to piezoelectric signals, serving predominantly to mechanically transmit signals through solid-to-solid contact. In contrast, processes and primary cilia were highly responsive to piezoelectric signals. Interestingly, the processes oriented in the direction of the electric field demonstrated a differential piezoelectric signal perception compared to those in other directions. Primary cilia were especially sensitive to fluid flow pressure changes, which were influenced both by loading rates and external piezoelectric effects. Overall, our findings illuminate the complexity of mechanical perception within osteocytes in a piezoelectric environment. This adds a new dimension to our understanding and suggests avenues for future research in bone reconstruction and cellular mechanical behavioral transmission.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"40 9","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10409-024-23533-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Biomechanical analysis of an osteocyte model by considering bone matrix’s piezoelectricity\",\"authors\":\"Xiyu Wang \\n (, ), Zhengbiao Yang \\n (, ), Yanru Xue \\n (, ), Yixian Qin \\n (, ), Meng Zhang \\n (, ), Jing Chen \\n (, ), Pengcui Li \\n (, ), Xiaochun Wei \\n (, ), Haoyu Feng \\n (, ), Liming He \\n (, ), Yanqin Wang \\n (, ), Xiaogang Wu \\n (, ), Weiyi Chen \\n (, )\",\"doi\":\"10.1007/s10409-024-23533-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Osteocytes, the primary cells in bone, play a crucial role in sensing external load environments and regulating other bone cells. Due to the piezoelectric effect of the mineralized matrix and collagen that make up bone, the mechanical stimulus received is converted into an electrical stimulus to affect the reconstruction of bone. Despite the importance of osteocyte, many studies have focused on the mechanical loading and fluid flow of it, there is still a gap in the study of the piezoelectric effects of various mechanosensors on the microscale. In this paper, we developed a finite element model of osteocytes that incorporates the piezoelectric bone matrix. This model is comprehensive, comprising the osteocyte cell body enclosed by lacuna, osteocyte processes enclosed by canaliculi, and the interposed charged ionic fluid. Additionally, it features mechanosensors such as collagen hillocks and primary cilia. In our study, we subjected the piezoelectric bone matrix model to triaxial displacement, subsequently assessing the electrical signal variations across different mechanosensors within the osteocyte. The observed disparities in mechanical perception by various mechanosensors were primarily attributable to greater liquid velocity changes in the polarization direction as opposed to other directions. Collagen hillocks showed insensitivity to piezoelectric signals, serving predominantly to mechanically transmit signals through solid-to-solid contact. In contrast, processes and primary cilia were highly responsive to piezoelectric signals. Interestingly, the processes oriented in the direction of the electric field demonstrated a differential piezoelectric signal perception compared to those in other directions. Primary cilia were especially sensitive to fluid flow pressure changes, which were influenced both by loading rates and external piezoelectric effects. Overall, our findings illuminate the complexity of mechanical perception within osteocytes in a piezoelectric environment. This adds a new dimension to our understanding and suggests avenues for future research in bone reconstruction and cellular mechanical behavioral transmission.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"40 9\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10409-024-23533-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-23533-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-23533-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Biomechanical analysis of an osteocyte model by considering bone matrix’s piezoelectricity
Osteocytes, the primary cells in bone, play a crucial role in sensing external load environments and regulating other bone cells. Due to the piezoelectric effect of the mineralized matrix and collagen that make up bone, the mechanical stimulus received is converted into an electrical stimulus to affect the reconstruction of bone. Despite the importance of osteocyte, many studies have focused on the mechanical loading and fluid flow of it, there is still a gap in the study of the piezoelectric effects of various mechanosensors on the microscale. In this paper, we developed a finite element model of osteocytes that incorporates the piezoelectric bone matrix. This model is comprehensive, comprising the osteocyte cell body enclosed by lacuna, osteocyte processes enclosed by canaliculi, and the interposed charged ionic fluid. Additionally, it features mechanosensors such as collagen hillocks and primary cilia. In our study, we subjected the piezoelectric bone matrix model to triaxial displacement, subsequently assessing the electrical signal variations across different mechanosensors within the osteocyte. The observed disparities in mechanical perception by various mechanosensors were primarily attributable to greater liquid velocity changes in the polarization direction as opposed to other directions. Collagen hillocks showed insensitivity to piezoelectric signals, serving predominantly to mechanically transmit signals through solid-to-solid contact. In contrast, processes and primary cilia were highly responsive to piezoelectric signals. Interestingly, the processes oriented in the direction of the electric field demonstrated a differential piezoelectric signal perception compared to those in other directions. Primary cilia were especially sensitive to fluid flow pressure changes, which were influenced both by loading rates and external piezoelectric effects. Overall, our findings illuminate the complexity of mechanical perception within osteocytes in a piezoelectric environment. This adds a new dimension to our understanding and suggests avenues for future research in bone reconstruction and cellular mechanical behavioral transmission.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics