分数星

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Astrophysics and Space Science Pub Date : 2024-09-26 DOI:10.1007/s10509-024-04362-y
Hooman Moradpour, Shahram Jalalzadeh, Mohsen Javaherian
{"title":"分数星","authors":"Hooman Moradpour,&nbsp;Shahram Jalalzadeh,&nbsp;Mohsen Javaherian","doi":"10.1007/s10509-024-04362-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the possibility of starting the process of collapsing and forming stars from a fractional molecular cloud. Although the Verlinde’s approach is employed to derive the corresponding gravitational potential, the results are easily generalizable to other gravitational potential proposals for fractional systems. It is due to the fact that the different methods, despite the difference in the details of results, all obtain power forms for the potential in terms of radius. An essential result of this analysis is the derivation of the corresponding Jeans mass limit, which is a crucial parameter in understanding the formation of stars. The study shows that the Jeans mass of a cloud in fractional gravity is much smaller than the traditional value. In addition, the study also determines the burning temperature of the resulting star using the Gamow theory. This calculation provides insight into the complex processes that govern the evolution of these celestial bodies. Finally, the study briefly discusses the investigation of hydrostatic equilibrium, a crucial condition that ensures the stability of these fractional stars. It also addresses the corresponding Lane–Emden equation, which is pivotal in understanding this equilibrium.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 9","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional stars\",\"authors\":\"Hooman Moradpour,&nbsp;Shahram Jalalzadeh,&nbsp;Mohsen Javaherian\",\"doi\":\"10.1007/s10509-024-04362-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study examines the possibility of starting the process of collapsing and forming stars from a fractional molecular cloud. Although the Verlinde’s approach is employed to derive the corresponding gravitational potential, the results are easily generalizable to other gravitational potential proposals for fractional systems. It is due to the fact that the different methods, despite the difference in the details of results, all obtain power forms for the potential in terms of radius. An essential result of this analysis is the derivation of the corresponding Jeans mass limit, which is a crucial parameter in understanding the formation of stars. The study shows that the Jeans mass of a cloud in fractional gravity is much smaller than the traditional value. In addition, the study also determines the burning temperature of the resulting star using the Gamow theory. This calculation provides insight into the complex processes that govern the evolution of these celestial bodies. Finally, the study briefly discusses the investigation of hydrostatic equilibrium, a crucial condition that ensures the stability of these fractional stars. It also addresses the corresponding Lane–Emden equation, which is pivotal in understanding this equilibrium.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"369 9\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-024-04362-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04362-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了从分数分子云开始坍缩并形成恒星的可能性。虽然采用的是韦林德方法来推导相应的引力势,但研究结果很容易推广到其他针对分数系统的引力势方案。这是因为,尽管不同方法得出的结果在细节上存在差异,但它们都得到了以半径为单位的引力势的幂形式。这项分析的一个重要结果是推导出了相应的杰恩质量极限,这是理解恒星形成的一个关键参数。研究表明,分数引力下云团的杰恩斯质量远小于传统值。此外,研究还利用伽莫夫理论确定了恒星的燃烧温度。通过计算,我们可以深入了解这些天体演化的复杂过程。最后,研究简要讨论了静水平衡的研究,这是确保这些分数恒星稳定的一个关键条件。研究还讨论了相应的 Lane-Emden 方程,该方程对于理解这种平衡至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fractional stars

This study examines the possibility of starting the process of collapsing and forming stars from a fractional molecular cloud. Although the Verlinde’s approach is employed to derive the corresponding gravitational potential, the results are easily generalizable to other gravitational potential proposals for fractional systems. It is due to the fact that the different methods, despite the difference in the details of results, all obtain power forms for the potential in terms of radius. An essential result of this analysis is the derivation of the corresponding Jeans mass limit, which is a crucial parameter in understanding the formation of stars. The study shows that the Jeans mass of a cloud in fractional gravity is much smaller than the traditional value. In addition, the study also determines the burning temperature of the resulting star using the Gamow theory. This calculation provides insight into the complex processes that govern the evolution of these celestial bodies. Finally, the study briefly discusses the investigation of hydrostatic equilibrium, a crucial condition that ensures the stability of these fractional stars. It also addresses the corresponding Lane–Emden equation, which is pivotal in understanding this equilibrium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
期刊最新文献
Turbulence and chaotic structure generated by nonlinear kinetic Alfvén waves near magnetic null points in solar corona Images in axially symmetric gravitational lenses from elliptical sources: the elimination method Following the tidal trail: a history of modeling the Magellanic Stream Investigation of non-substorm Pi2 magnetic pulsation during solar flare event Resolved stellar populations as a key to unlocking the formation and evolution of galaxies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1