在 IGb08 参照系中估算乌克兰全球导航卫星系统台站的速度

IF 0.5 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS Kinematics and Physics of Celestial Bodies Pub Date : 2024-09-27 DOI:10.3103/S0884591324050039
O. O. Khoda
{"title":"在 IGb08 参照系中估算乌克兰全球导航卫星系统台站的速度","authors":"O. O. Khoda","doi":"10.3103/S0884591324050039","DOIUrl":null,"url":null,"abstract":"<p>The cumulative solution for GPS weeks 935–1933 (December 7, 1997–January 28, 2017) was obtained in the GNSS Data Analysis Centre of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine after adjustment of 6993 daily normal equation files received as a result of the regular processing and the second reprocessing campaign of archival observations. The <i>ADDNEQ2</i> program of the <i>Bernese GNSS Software ver. 5.2</i> was used. Before the adjustment, the times series of station coordinates received from the mentioned processing were analyzed to find outliers and determine sets of coordinates and velocities. For foreign EPN stations, the files prepared by the EUREF Permanent GNSS Network were used (EPN_outliers.lst and EPN_discontinuities.snx respectively). For 233 permanent GNSS stations, the 356 sets of coordinates and 256 sets of velocities that correspond them were established. According to the duration of observations, the coordinate sets were divided into three groups: (1) less than 1 year (94 sets), (2) 1–3 years (92 sets), (3) more than 3 years (166 sets). Four coordinate sets were excluded from further analysis. The IGb08 reference frame was realized by applying No-Net-Translation conditions on the coordinates of the IGS Reference Frame stations. The velocities of these stations were heavily constrained (10<sup>–9</sup> m/year for each components) that, in term of adjustment means, a fixing of velocities values. As result, the coordinates and velocities of the Ukrainian and the Eastern European stations in the IGb08 reference frame at epoch 2005.0 were estimated with high precision. The mean repeatabilities for components of station coordinates are 1.69, 1.40, and 3.63 mm for the north, east, and height components respectively.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 5","pages":"257 - 268"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Velocities of Ukrainian GNSS Stations in the IGb08 Reference Frame\",\"authors\":\"O. O. Khoda\",\"doi\":\"10.3103/S0884591324050039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cumulative solution for GPS weeks 935–1933 (December 7, 1997–January 28, 2017) was obtained in the GNSS Data Analysis Centre of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine after adjustment of 6993 daily normal equation files received as a result of the regular processing and the second reprocessing campaign of archival observations. The <i>ADDNEQ2</i> program of the <i>Bernese GNSS Software ver. 5.2</i> was used. Before the adjustment, the times series of station coordinates received from the mentioned processing were analyzed to find outliers and determine sets of coordinates and velocities. For foreign EPN stations, the files prepared by the EUREF Permanent GNSS Network were used (EPN_outliers.lst and EPN_discontinuities.snx respectively). For 233 permanent GNSS stations, the 356 sets of coordinates and 256 sets of velocities that correspond them were established. According to the duration of observations, the coordinate sets were divided into three groups: (1) less than 1 year (94 sets), (2) 1–3 years (92 sets), (3) more than 3 years (166 sets). Four coordinate sets were excluded from further analysis. The IGb08 reference frame was realized by applying No-Net-Translation conditions on the coordinates of the IGS Reference Frame stations. The velocities of these stations were heavily constrained (10<sup>–9</sup> m/year for each components) that, in term of adjustment means, a fixing of velocities values. As result, the coordinates and velocities of the Ukrainian and the Eastern European stations in the IGb08 reference frame at epoch 2005.0 were estimated with high precision. The mean repeatabilities for components of station coordinates are 1.69, 1.40, and 3.63 mm for the north, east, and height components respectively.</p>\",\"PeriodicalId\":681,\"journal\":{\"name\":\"Kinematics and Physics of Celestial Bodies\",\"volume\":\"40 5\",\"pages\":\"257 - 268\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinematics and Physics of Celestial Bodies\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0884591324050039\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0884591324050039","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

乌克兰国家科学院主要天文观测台全球导航卫星系统数据分析中心在对常规处理和第二次档案观测再处理活动中收到的6993个每日正常方程文件进行调整后,获得了全球定位系统第935-1933周(1997年12月7日至2017年1月28日)的累积解。使用了伯尔尼全球导航卫星系统软件 5.2 版的 ADDNEQ2 程序。5.2 版的 ADDNEQ2 程序。在调整之前,对上述处理过程中收到的台站坐标时间序列进行了分析,以查找异常值并确定坐标和速度集。对于外国 EPN 台站,使用了 EUREF 永久 GNSS 网络编制的文件(分别为 EPN_outliers.lst 和 EPN_discontinuities.snx)。对于 233 个永久性全球导航卫星系统台站,建立了与之对应的 356 组坐标和 256 组速度。根据观测时间的长短,坐标集被分为三组:(1) 小于 1 年(94 组),(2) 1-3 年(92 组),(3) 3 年以上(166 组)。有四组坐标被排除在进一步分析之外。IGb08 参考框架是通过对 IGS 参考框架站点的坐标应用无净平移条件实现的。这些站点的速度受到严格限制(每个分量为 10-9 米/年),调整意味着速度值的固定。因此,IGb08 参照系中的乌克兰和东欧站点在 2005.0 历元的坐标和速度估算精度很高。台站坐标各分量的平均重复性分别为 1.69、1.40 和 3.63 毫米(北、东和高度分量)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Velocities of Ukrainian GNSS Stations in the IGb08 Reference Frame

The cumulative solution for GPS weeks 935–1933 (December 7, 1997–January 28, 2017) was obtained in the GNSS Data Analysis Centre of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine after adjustment of 6993 daily normal equation files received as a result of the regular processing and the second reprocessing campaign of archival observations. The ADDNEQ2 program of the Bernese GNSS Software ver. 5.2 was used. Before the adjustment, the times series of station coordinates received from the mentioned processing were analyzed to find outliers and determine sets of coordinates and velocities. For foreign EPN stations, the files prepared by the EUREF Permanent GNSS Network were used (EPN_outliers.lst and EPN_discontinuities.snx respectively). For 233 permanent GNSS stations, the 356 sets of coordinates and 256 sets of velocities that correspond them were established. According to the duration of observations, the coordinate sets were divided into three groups: (1) less than 1 year (94 sets), (2) 1–3 years (92 sets), (3) more than 3 years (166 sets). Four coordinate sets were excluded from further analysis. The IGb08 reference frame was realized by applying No-Net-Translation conditions on the coordinates of the IGS Reference Frame stations. The velocities of these stations were heavily constrained (10–9 m/year for each components) that, in term of adjustment means, a fixing of velocities values. As result, the coordinates and velocities of the Ukrainian and the Eastern European stations in the IGb08 reference frame at epoch 2005.0 were estimated with high precision. The mean repeatabilities for components of station coordinates are 1.69, 1.40, and 3.63 mm for the north, east, and height components respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kinematics and Physics of Celestial Bodies
Kinematics and Physics of Celestial Bodies ASTRONOMY & ASTROPHYSICS-
CiteScore
0.90
自引率
40.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Estimation of Velocities of Ukrainian GNSS Stations in the IGb08 Reference Frame A Study of Dynamics of Changes in Parameters of the Chandler Pole Oscillation in the Period 1975.0–2011.0 A Spectral Study of Active Region Site with an Ellerman Bomb and Hα Ejections: Chromosphere. Arch Filament System Plane Internal Gravity Waves with Arbitrary Amplitude A Statistical Study of the CME Properties Based on Angular Width during the Solar Cycle 24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1