G. Venkatesan, R. Selvabharathi, K. Kulathuraan, V. Vivek
{"title":"苏枋木(SW)/聚乙烯醇(PVA)/聚乙烯(PE)/氮化铝(AlN)天然纤维纳米复合材料的微观结构和摩擦学特性对深浸涂覆法的影响","authors":"G. Venkatesan, R. Selvabharathi, K. Kulathuraan, V. Vivek","doi":"10.1007/s10965-024-04151-9","DOIUrl":null,"url":null,"abstract":"<div><p>The natural fiber nanocomposite materials employed in this study, which included sappanwood (SW), polyvinyl alcohol (PVA), polyethylene (PE), aluminum nitride (AlN), and epoxy resin (EP), were made by hand lay-up processes. Acryl Silane Coupling Agent (ASCA) was employed in the deep-dip coating method to enhance the tribology and microstructure of the natural fiber nano composite materials. For composite materials made of sappanwood and polyethylene, the resin microstructure was largely responsible for the observed homogeneous phase and hexagonal structure. The solid outer and secondary phases of the outer and inner surface layers of the EP-PE-SW-AlN composite materials were created using the silane coating process. Tensile properties of EP-PVA-SW-PE-AlN samples were reached at 42.8 MPa, and three-point bending tests were reached at 47.6 MPa. Furthermore, 597 °C was obtained for EP-PVA-SW-PE-AlN composite materials on TGA results. The average hardness value of (60) EP combined (10%) PVA, (10%) SW, (10%) PE, and (10%) AlN nano particle was highly present 98 (shore-D) throughout the silane coating process. Wear resistance and friction tests were performed on EP-PVA-SW-AlN, EP-PE-SW-AlN, and EP-PVA-SW-PE-AlN composite materials in order to improve the outer surface layers and interior composite structure. Dimples, micro voids, microscopic holes, and basket voids were seen on the fracture surfaces of each composite sample.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"31 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of microstructure and tribology properties on deep-dipping coating method of sappanwood (SW)/ polyvinyl alcohol (PVA)/ Polyethylene (PE)/ Aluminium nitride (AlN) natural fiber nanocomposite materials\",\"authors\":\"G. Venkatesan, R. Selvabharathi, K. Kulathuraan, V. Vivek\",\"doi\":\"10.1007/s10965-024-04151-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The natural fiber nanocomposite materials employed in this study, which included sappanwood (SW), polyvinyl alcohol (PVA), polyethylene (PE), aluminum nitride (AlN), and epoxy resin (EP), were made by hand lay-up processes. Acryl Silane Coupling Agent (ASCA) was employed in the deep-dip coating method to enhance the tribology and microstructure of the natural fiber nano composite materials. For composite materials made of sappanwood and polyethylene, the resin microstructure was largely responsible for the observed homogeneous phase and hexagonal structure. The solid outer and secondary phases of the outer and inner surface layers of the EP-PE-SW-AlN composite materials were created using the silane coating process. Tensile properties of EP-PVA-SW-PE-AlN samples were reached at 42.8 MPa, and three-point bending tests were reached at 47.6 MPa. Furthermore, 597 °C was obtained for EP-PVA-SW-PE-AlN composite materials on TGA results. The average hardness value of (60) EP combined (10%) PVA, (10%) SW, (10%) PE, and (10%) AlN nano particle was highly present 98 (shore-D) throughout the silane coating process. Wear resistance and friction tests were performed on EP-PVA-SW-AlN, EP-PE-SW-AlN, and EP-PVA-SW-PE-AlN composite materials in order to improve the outer surface layers and interior composite structure. Dimples, micro voids, microscopic holes, and basket voids were seen on the fracture surfaces of each composite sample.</p></div>\",\"PeriodicalId\":658,\"journal\":{\"name\":\"Journal of Polymer Research\",\"volume\":\"31 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10965-024-04151-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04151-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Influence of microstructure and tribology properties on deep-dipping coating method of sappanwood (SW)/ polyvinyl alcohol (PVA)/ Polyethylene (PE)/ Aluminium nitride (AlN) natural fiber nanocomposite materials
The natural fiber nanocomposite materials employed in this study, which included sappanwood (SW), polyvinyl alcohol (PVA), polyethylene (PE), aluminum nitride (AlN), and epoxy resin (EP), were made by hand lay-up processes. Acryl Silane Coupling Agent (ASCA) was employed in the deep-dip coating method to enhance the tribology and microstructure of the natural fiber nano composite materials. For composite materials made of sappanwood and polyethylene, the resin microstructure was largely responsible for the observed homogeneous phase and hexagonal structure. The solid outer and secondary phases of the outer and inner surface layers of the EP-PE-SW-AlN composite materials were created using the silane coating process. Tensile properties of EP-PVA-SW-PE-AlN samples were reached at 42.8 MPa, and three-point bending tests were reached at 47.6 MPa. Furthermore, 597 °C was obtained for EP-PVA-SW-PE-AlN composite materials on TGA results. The average hardness value of (60) EP combined (10%) PVA, (10%) SW, (10%) PE, and (10%) AlN nano particle was highly present 98 (shore-D) throughout the silane coating process. Wear resistance and friction tests were performed on EP-PVA-SW-AlN, EP-PE-SW-AlN, and EP-PVA-SW-PE-AlN composite materials in order to improve the outer surface layers and interior composite structure. Dimples, micro voids, microscopic holes, and basket voids were seen on the fracture surfaces of each composite sample.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.