利用颅内和头皮脑电图预测麻醉后镇静水平的深度学习模型

Lichy Han , David A. Purger , Sarah L. Eagleman , Casey H. Halpern , Vivek Buch , Samantha M. Gaston , Babak Razavi , Kimford Meador , David R. Drover
{"title":"利用颅内和头皮脑电图预测麻醉后镇静水平的深度学习模型","authors":"Lichy Han ,&nbsp;David A. Purger ,&nbsp;Sarah L. Eagleman ,&nbsp;Casey H. Halpern ,&nbsp;Vivek Buch ,&nbsp;Samantha M. Gaston ,&nbsp;Babak Razavi ,&nbsp;Kimford Meador ,&nbsp;David R. Drover","doi":"10.1016/j.bjao.2024.100347","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Maintaining an appropriate depth of anaesthesia is important for avoiding adverse effects from undermedication or overmedication during surgery. Electroencephalography (EEG) has become increasingly used to achieve this balance. Investigating the predictive power of intracranial EEG (iEEG) and scalp EEG for different levels of sedation could increase the utility of EEG monitoring.</div></div><div><h3>Methods</h3><div>Simultaneous iEEG, scalp EEG, and Observer's Assessment of Alertness/Sedation (OAA/S) scores were recorded during emergence from anaesthesia in seven patients undergoing placement of intracranial electrodes for medically refractory epilepsy. A deep learning model was constructed to predict an OAA/S score of 0–2 <em>vs</em> 3–5 using iEEG, scalp EEG, and their combination. An additional five patients with only scalp EEG data were used for independent validation. Models were evaluated using the area under the receiver-operating characteristic curve (AUC).</div></div><div><h3>Results</h3><div>Combining scalp EEG and iEEG yielded significantly better prediction (AUC=0.795, <em>P</em>&lt;0.001) compared with iEEG only (AUC=0.750, <em>P</em>=0.02) or scalp EEG only (AUC=0.764, <em>P</em>&lt;0.001). The validation scalp EEG only data resulted in an AUC of 0.844. Combining the two modalities appeared to capture spatiotemporal advantages from both modalities.</div></div><div><h3>Conclusions</h3><div>The combination of iEEG and scalp EEG better predicted sedation level than either modality alone. The scalp EEG only model achieved a similar AUC to the combined model and maintained its performance in additional patients, suggesting that scalp EEG models are likely sufficient for real-time monitoring. Deep learning approaches using multiple leads to capture a wider area of brain activity may help augment existing EEG monitors for prediction of sedation.</div></div>","PeriodicalId":72418,"journal":{"name":"BJA open","volume":"12 ","pages":"Article 100347"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning models using intracranial and scalp EEG for predicting sedation level during emergence from anaesthesia\",\"authors\":\"Lichy Han ,&nbsp;David A. Purger ,&nbsp;Sarah L. Eagleman ,&nbsp;Casey H. Halpern ,&nbsp;Vivek Buch ,&nbsp;Samantha M. Gaston ,&nbsp;Babak Razavi ,&nbsp;Kimford Meador ,&nbsp;David R. Drover\",\"doi\":\"10.1016/j.bjao.2024.100347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Maintaining an appropriate depth of anaesthesia is important for avoiding adverse effects from undermedication or overmedication during surgery. Electroencephalography (EEG) has become increasingly used to achieve this balance. Investigating the predictive power of intracranial EEG (iEEG) and scalp EEG for different levels of sedation could increase the utility of EEG monitoring.</div></div><div><h3>Methods</h3><div>Simultaneous iEEG, scalp EEG, and Observer's Assessment of Alertness/Sedation (OAA/S) scores were recorded during emergence from anaesthesia in seven patients undergoing placement of intracranial electrodes for medically refractory epilepsy. A deep learning model was constructed to predict an OAA/S score of 0–2 <em>vs</em> 3–5 using iEEG, scalp EEG, and their combination. An additional five patients with only scalp EEG data were used for independent validation. Models were evaluated using the area under the receiver-operating characteristic curve (AUC).</div></div><div><h3>Results</h3><div>Combining scalp EEG and iEEG yielded significantly better prediction (AUC=0.795, <em>P</em>&lt;0.001) compared with iEEG only (AUC=0.750, <em>P</em>=0.02) or scalp EEG only (AUC=0.764, <em>P</em>&lt;0.001). The validation scalp EEG only data resulted in an AUC of 0.844. Combining the two modalities appeared to capture spatiotemporal advantages from both modalities.</div></div><div><h3>Conclusions</h3><div>The combination of iEEG and scalp EEG better predicted sedation level than either modality alone. The scalp EEG only model achieved a similar AUC to the combined model and maintained its performance in additional patients, suggesting that scalp EEG models are likely sufficient for real-time monitoring. Deep learning approaches using multiple leads to capture a wider area of brain activity may help augment existing EEG monitors for prediction of sedation.</div></div>\",\"PeriodicalId\":72418,\"journal\":{\"name\":\"BJA open\",\"volume\":\"12 \",\"pages\":\"Article 100347\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BJA open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772609624000911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BJA open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772609624000911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景保持适当的麻醉深度对于避免手术过程中用药不足或用药过度造成的不良影响非常重要。脑电图(EEG)越来越多地被用于实现这一平衡。研究颅内脑电图(iEEG)和头皮脑电图对不同镇静水平的预测能力可以提高脑电图监测的实用性。方法在七名因药物难治性癫痫而接受颅内电极置入手术的患者麻醉苏醒期间同时记录iEEG、头皮脑电图和观察者警觉/镇静评估(OAA/S)评分。利用 iEEG、头皮脑电图和它们的组合,构建了一个深度学习模型来预测 0-2 与 3-5 的 OAA/S 评分。另外五名只有头皮脑电图数据的患者被用于独立验证。结果与仅使用 iEEG(AUC=0.750,P=0.02)或仅使用头皮脑电图(AUC=0.764,P<0.001)相比,头皮脑电图和 iEEG 的组合预测效果明显更好(AUC=0.795,P<0.001)。仅验证头皮脑电图数据的 AUC 为 0.844。结论 iEEG 和头皮脑电图的结合比单独使用任何一种模式都能更好地预测镇静水平。仅头皮脑电图模型的 AUC 与组合模型相似,并在更多患者中保持其性能,这表明头皮脑电图模型可能足以用于实时监测。使用多导线捕捉更广泛的大脑活动区域的深度学习方法可能有助于增强现有的脑电图监护仪对镇静的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning models using intracranial and scalp EEG for predicting sedation level during emergence from anaesthesia

Background

Maintaining an appropriate depth of anaesthesia is important for avoiding adverse effects from undermedication or overmedication during surgery. Electroencephalography (EEG) has become increasingly used to achieve this balance. Investigating the predictive power of intracranial EEG (iEEG) and scalp EEG for different levels of sedation could increase the utility of EEG monitoring.

Methods

Simultaneous iEEG, scalp EEG, and Observer's Assessment of Alertness/Sedation (OAA/S) scores were recorded during emergence from anaesthesia in seven patients undergoing placement of intracranial electrodes for medically refractory epilepsy. A deep learning model was constructed to predict an OAA/S score of 0–2 vs 3–5 using iEEG, scalp EEG, and their combination. An additional five patients with only scalp EEG data were used for independent validation. Models were evaluated using the area under the receiver-operating characteristic curve (AUC).

Results

Combining scalp EEG and iEEG yielded significantly better prediction (AUC=0.795, P<0.001) compared with iEEG only (AUC=0.750, P=0.02) or scalp EEG only (AUC=0.764, P<0.001). The validation scalp EEG only data resulted in an AUC of 0.844. Combining the two modalities appeared to capture spatiotemporal advantages from both modalities.

Conclusions

The combination of iEEG and scalp EEG better predicted sedation level than either modality alone. The scalp EEG only model achieved a similar AUC to the combined model and maintained its performance in additional patients, suggesting that scalp EEG models are likely sufficient for real-time monitoring. Deep learning approaches using multiple leads to capture a wider area of brain activity may help augment existing EEG monitors for prediction of sedation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BJA open
BJA open Anesthesiology and Pain Medicine
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
83 days
期刊最新文献
Xenon anaesthesia is associated with a reduction in frontal electroencephalogram peak alpha frequency Moderate or severe pain in recovery after major elective surgery: A pilot retrospective analysis to identify those at risk Association between plasma-free haemoglobin and postoperative acute kidney injury in paediatric cardiac surgery: a prospective observational study Oxygen insufflation via the working channel during tracheal intubation guided by a flexible optical scope and benefits, dangers, and future of the method: a narrative review Incidence and trajectories of subclinical and KDIGO-defined postoperative acute kidney injury in patients undergoing major abdominal surgery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1