{"title":"使用新型时域准动态方法分析拉伸腿平台的肌腱疲劳问题","authors":"Binbin Li , Wei Huang , Xiaobo Chen","doi":"10.1016/j.marstruc.2024.103701","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the non-Gaussian characteristics of the tendon tension response of tension leg platform (TLP), the common statistical model is not adequate to estimate the fatigue damage accurately in the frequency domain, thus the time domain analysis is required. A new quasi-dynamic method is proposed to calculate the tendon tension response considering various factors. An equivalent analytical tendon model is employed and the post-treatment has been carried out for the reconstruction of the high-frequency stress response based on the vertical motion QTFs of each tendon by HydroSTAR. Forty sets of environmental cases are extracted from a scatter diagram. The rainflow counting method is applied to deal with the stress time series and the fatigue damage can be obtained combined with the relevant S-N curve. The number of cycles of tension for each tendon is discussed, considering the contribution of the first-order wave load, the second-order diff-frequency wave load, and the second-order sum-frequency wave load. The comparison of annual fatigue damage based on the quasi-dynamic method and coupled method by Orcaflex is carried out. The study proves that the quasi-dynamic method is an efficient way to estimate the fatigue life of each tendon in the time domain considering numerous cases of discrete sea states.</div></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"99 ","pages":"Article 103701"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tendon fatigue analysis of tension leg platform using a new time-domain quasi-dynamic method\",\"authors\":\"Binbin Li , Wei Huang , Xiaobo Chen\",\"doi\":\"10.1016/j.marstruc.2024.103701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to the non-Gaussian characteristics of the tendon tension response of tension leg platform (TLP), the common statistical model is not adequate to estimate the fatigue damage accurately in the frequency domain, thus the time domain analysis is required. A new quasi-dynamic method is proposed to calculate the tendon tension response considering various factors. An equivalent analytical tendon model is employed and the post-treatment has been carried out for the reconstruction of the high-frequency stress response based on the vertical motion QTFs of each tendon by HydroSTAR. Forty sets of environmental cases are extracted from a scatter diagram. The rainflow counting method is applied to deal with the stress time series and the fatigue damage can be obtained combined with the relevant S-N curve. The number of cycles of tension for each tendon is discussed, considering the contribution of the first-order wave load, the second-order diff-frequency wave load, and the second-order sum-frequency wave load. The comparison of annual fatigue damage based on the quasi-dynamic method and coupled method by Orcaflex is carried out. The study proves that the quasi-dynamic method is an efficient way to estimate the fatigue life of each tendon in the time domain considering numerous cases of discrete sea states.</div></div>\",\"PeriodicalId\":49879,\"journal\":{\"name\":\"Marine Structures\",\"volume\":\"99 \",\"pages\":\"Article 103701\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951833924001291\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833924001291","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Tendon fatigue analysis of tension leg platform using a new time-domain quasi-dynamic method
Due to the non-Gaussian characteristics of the tendon tension response of tension leg platform (TLP), the common statistical model is not adequate to estimate the fatigue damage accurately in the frequency domain, thus the time domain analysis is required. A new quasi-dynamic method is proposed to calculate the tendon tension response considering various factors. An equivalent analytical tendon model is employed and the post-treatment has been carried out for the reconstruction of the high-frequency stress response based on the vertical motion QTFs of each tendon by HydroSTAR. Forty sets of environmental cases are extracted from a scatter diagram. The rainflow counting method is applied to deal with the stress time series and the fatigue damage can be obtained combined with the relevant S-N curve. The number of cycles of tension for each tendon is discussed, considering the contribution of the first-order wave load, the second-order diff-frequency wave load, and the second-order sum-frequency wave load. The comparison of annual fatigue damage based on the quasi-dynamic method and coupled method by Orcaflex is carried out. The study proves that the quasi-dynamic method is an efficient way to estimate the fatigue life of each tendon in the time domain considering numerous cases of discrete sea states.
期刊介绍:
This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.