MILG:利用音频调制图像绘制生成逼真的唇音同步视频

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2024-09-01 DOI:10.1016/j.visinf.2024.08.002
Han Bao , Xuhong Zhang , Qinying Wang , Kangming Liang , Zonghui Wang , Shouling Ji , Wenzhi Chen
{"title":"MILG:利用音频调制图像绘制生成逼真的唇音同步视频","authors":"Han Bao ,&nbsp;Xuhong Zhang ,&nbsp;Qinying Wang ,&nbsp;Kangming Liang ,&nbsp;Zonghui Wang ,&nbsp;Shouling Ji ,&nbsp;Wenzhi Chen","doi":"10.1016/j.visinf.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>Existing lip synchronization (lip-sync) methods generate accurately synchronized mouths and faces in a generated video. However, they still confront the problem of artifacts in regions of non-interest (RONI), <em>e.g.</em>, background and other parts of a face, which decreases the overall visual quality. To solve these problems, we innovatively introduce diverse image inpainting to lip-sync generation. We propose Modulated Inpainting Lip-sync GAN (MILG), an audio-constraint inpainting network to predict synchronous mouths. MILG utilizes prior knowledge of RONI and audio sequences to predict lip shape instead of image generation, which can keep the RONI consistent. Specifically, we integrate modulated spatially probabilistic diversity normalization (MSPD Norm) in our inpainting network, which helps the network generate fine-grained diverse mouth movements guided by the continuous audio features. Furthermore, to lower the training overhead, we modify the contrastive loss in lip-sync to support small-batch-size and few-sample training. Extensive experiments demonstrate that our approach outperforms the existing state-of-the-art of image quality and authenticity while keeping lip-sync.</div></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"8 3","pages":"Pages 71-81"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MILG: Realistic lip-sync video generation with audio-modulated image inpainting\",\"authors\":\"Han Bao ,&nbsp;Xuhong Zhang ,&nbsp;Qinying Wang ,&nbsp;Kangming Liang ,&nbsp;Zonghui Wang ,&nbsp;Shouling Ji ,&nbsp;Wenzhi Chen\",\"doi\":\"10.1016/j.visinf.2024.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Existing lip synchronization (lip-sync) methods generate accurately synchronized mouths and faces in a generated video. However, they still confront the problem of artifacts in regions of non-interest (RONI), <em>e.g.</em>, background and other parts of a face, which decreases the overall visual quality. To solve these problems, we innovatively introduce diverse image inpainting to lip-sync generation. We propose Modulated Inpainting Lip-sync GAN (MILG), an audio-constraint inpainting network to predict synchronous mouths. MILG utilizes prior knowledge of RONI and audio sequences to predict lip shape instead of image generation, which can keep the RONI consistent. Specifically, we integrate modulated spatially probabilistic diversity normalization (MSPD Norm) in our inpainting network, which helps the network generate fine-grained diverse mouth movements guided by the continuous audio features. Furthermore, to lower the training overhead, we modify the contrastive loss in lip-sync to support small-batch-size and few-sample training. Extensive experiments demonstrate that our approach outperforms the existing state-of-the-art of image quality and authenticity while keeping lip-sync.</div></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"8 3\",\"pages\":\"Pages 71-81\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X24000408\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X24000408","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现有的唇部同步(lip-sync)方法能在生成的视频中准确同步嘴部和面部。然而,这些方法仍然面临着非感兴趣区域(RONI)的伪像问题,例如背景和脸部的其他部分,从而降低了整体视觉质量。为了解决这些问题,我们创新性地将多样化的图像绘制引入到唇音生成中。我们提出了调制内绘唇同步 GAN(MILG),这是一种音频约束内绘网络,用于预测同步口型。MILG 利用 RONI 和音频序列的先验知识来预测唇形,而不是生成图像,这样可以保持 RONI 的一致性。具体来说,我们将调制空间概率多样性归一化(MSPD Norm)集成到我们的内绘制网络中,这有助于网络在连续音频特征的引导下生成细粒度的多样化嘴部动作。此外,为了降低训练开销,我们修改了唇部同步中的对比度损失,以支持小批量和少样本训练。大量实验证明,我们的方法在保持唇语同步的同时,在图像质量和真实性方面都优于现有的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MILG: Realistic lip-sync video generation with audio-modulated image inpainting
Existing lip synchronization (lip-sync) methods generate accurately synchronized mouths and faces in a generated video. However, they still confront the problem of artifacts in regions of non-interest (RONI), e.g., background and other parts of a face, which decreases the overall visual quality. To solve these problems, we innovatively introduce diverse image inpainting to lip-sync generation. We propose Modulated Inpainting Lip-sync GAN (MILG), an audio-constraint inpainting network to predict synchronous mouths. MILG utilizes prior knowledge of RONI and audio sequences to predict lip shape instead of image generation, which can keep the RONI consistent. Specifically, we integrate modulated spatially probabilistic diversity normalization (MSPD Norm) in our inpainting network, which helps the network generate fine-grained diverse mouth movements guided by the continuous audio features. Furthermore, to lower the training overhead, we modify the contrastive loss in lip-sync to support small-batch-size and few-sample training. Extensive experiments demonstrate that our approach outperforms the existing state-of-the-art of image quality and authenticity while keeping lip-sync.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Intelligent CAD 2.0 Editorial Board RelicCARD: Enhancing cultural relics exploration through semantics-based augmented reality tangible interaction design JobViz: Skill-driven visual exploration of job advertisements Visual evaluation of graph representation learning based on the presentation of community structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1