{"title":"通过对南亚拉姆萨尔湿地的时空分析促进可持续发展","authors":"Manish Kumar Goyal , Shivukumar Rakkasagi , Rao Y. Surampalli , Tian C. Zhang , Saikumar Erumalla , Abhijeet Gupta , Saket Dubey , Chalida U-tapao","doi":"10.1016/j.techsoc.2024.102723","DOIUrl":null,"url":null,"abstract":"<div><div>The ecological significance of wetlands makes it imperative to study changes in their inundation extent and propose necessary conservation measures. Monitoring wetland dynamics and implementing strategies to protect these essential ecosystems is crucial for maintaining the balance of natural systems. This study used pre-processed Landsat imagery (1991–2020) to generate yearly composites and produce inundation maps based on an automated Short-Wave Infrared thresholding technique within the Google Earth Engine platform. The analysis was executed on individual wetlands to describe their typical condition owing to regional climatic and geographical circumstances. The Mann-Kendall test was used to understand the trends in the change of inundation extent. The thresholding method achieved an overall accuracy of 89.0 %, with average dry and wet Producer's accuracies of 90.6 % and 86.6 %, respectively. The accuracy was higher for open water lakes compared to wetlands with complex vegetation dynamics. The trend analysis revealed that 46 sites follow an increasing trend, while the remaining 43 sites were found to be decreasing. Among these 43, 12 sites were found to be significantly decreasing, with the Upper Ganga River showing a maximum decrease of about 59 % in the inundation extent. Factors such as elevation, precipitation, temperature, and climate type were found to influence the trends in wetland inundation. Wetlands at high altitudes (>4000 m) and those receiving less than 500 mm of annual precipitation were more likely to exhibit decreasing trends. Coastal wetlands showed varying trends, with five increasing and three significantly increasing. The findings of this study provide valuable insights into the relationship between sustainable development and wetland conservation, supporting the Ramsar Convention's goals and the UN's Sustainable Development Goals. The individualized analysis of Ramsar sites enables the development of localized management strategies, climate change adaptation, and informed policy-making, ultimately contributing to the sustainable use of these critical ecosystems in South Asia.</div></div>","PeriodicalId":47979,"journal":{"name":"Technology in Society","volume":"79 ","pages":"Article 102723"},"PeriodicalIF":10.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing sustainable development through Spatiotemporal analysis of Ramsar wetland sites in South Asia\",\"authors\":\"Manish Kumar Goyal , Shivukumar Rakkasagi , Rao Y. Surampalli , Tian C. Zhang , Saikumar Erumalla , Abhijeet Gupta , Saket Dubey , Chalida U-tapao\",\"doi\":\"10.1016/j.techsoc.2024.102723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ecological significance of wetlands makes it imperative to study changes in their inundation extent and propose necessary conservation measures. Monitoring wetland dynamics and implementing strategies to protect these essential ecosystems is crucial for maintaining the balance of natural systems. This study used pre-processed Landsat imagery (1991–2020) to generate yearly composites and produce inundation maps based on an automated Short-Wave Infrared thresholding technique within the Google Earth Engine platform. The analysis was executed on individual wetlands to describe their typical condition owing to regional climatic and geographical circumstances. The Mann-Kendall test was used to understand the trends in the change of inundation extent. The thresholding method achieved an overall accuracy of 89.0 %, with average dry and wet Producer's accuracies of 90.6 % and 86.6 %, respectively. The accuracy was higher for open water lakes compared to wetlands with complex vegetation dynamics. The trend analysis revealed that 46 sites follow an increasing trend, while the remaining 43 sites were found to be decreasing. Among these 43, 12 sites were found to be significantly decreasing, with the Upper Ganga River showing a maximum decrease of about 59 % in the inundation extent. Factors such as elevation, precipitation, temperature, and climate type were found to influence the trends in wetland inundation. Wetlands at high altitudes (>4000 m) and those receiving less than 500 mm of annual precipitation were more likely to exhibit decreasing trends. Coastal wetlands showed varying trends, with five increasing and three significantly increasing. The findings of this study provide valuable insights into the relationship between sustainable development and wetland conservation, supporting the Ramsar Convention's goals and the UN's Sustainable Development Goals. The individualized analysis of Ramsar sites enables the development of localized management strategies, climate change adaptation, and informed policy-making, ultimately contributing to the sustainable use of these critical ecosystems in South Asia.</div></div>\",\"PeriodicalId\":47979,\"journal\":{\"name\":\"Technology in Society\",\"volume\":\"79 \",\"pages\":\"Article 102723\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology in Society\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0160791X24002719\",\"RegionNum\":1,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL ISSUES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology in Society","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160791X24002719","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL ISSUES","Score":null,"Total":0}
Enhancing sustainable development through Spatiotemporal analysis of Ramsar wetland sites in South Asia
The ecological significance of wetlands makes it imperative to study changes in their inundation extent and propose necessary conservation measures. Monitoring wetland dynamics and implementing strategies to protect these essential ecosystems is crucial for maintaining the balance of natural systems. This study used pre-processed Landsat imagery (1991–2020) to generate yearly composites and produce inundation maps based on an automated Short-Wave Infrared thresholding technique within the Google Earth Engine platform. The analysis was executed on individual wetlands to describe their typical condition owing to regional climatic and geographical circumstances. The Mann-Kendall test was used to understand the trends in the change of inundation extent. The thresholding method achieved an overall accuracy of 89.0 %, with average dry and wet Producer's accuracies of 90.6 % and 86.6 %, respectively. The accuracy was higher for open water lakes compared to wetlands with complex vegetation dynamics. The trend analysis revealed that 46 sites follow an increasing trend, while the remaining 43 sites were found to be decreasing. Among these 43, 12 sites were found to be significantly decreasing, with the Upper Ganga River showing a maximum decrease of about 59 % in the inundation extent. Factors such as elevation, precipitation, temperature, and climate type were found to influence the trends in wetland inundation. Wetlands at high altitudes (>4000 m) and those receiving less than 500 mm of annual precipitation were more likely to exhibit decreasing trends. Coastal wetlands showed varying trends, with five increasing and three significantly increasing. The findings of this study provide valuable insights into the relationship between sustainable development and wetland conservation, supporting the Ramsar Convention's goals and the UN's Sustainable Development Goals. The individualized analysis of Ramsar sites enables the development of localized management strategies, climate change adaptation, and informed policy-making, ultimately contributing to the sustainable use of these critical ecosystems in South Asia.
期刊介绍:
Technology in Society is a global journal dedicated to fostering discourse at the crossroads of technological change and the social, economic, business, and philosophical transformation of our world. The journal aims to provide scholarly contributions that empower decision-makers to thoughtfully and intentionally navigate the decisions shaping this dynamic landscape. A common thread across these fields is the role of technology in society, influencing economic, political, and cultural dynamics. Scholarly work in Technology in Society delves into the social forces shaping technological decisions and the societal choices regarding technology use. This encompasses scholarly and theoretical approaches (history and philosophy of science and technology, technology forecasting, economic growth, and policy, ethics), applied approaches (business innovation, technology management, legal and engineering), and developmental perspectives (technology transfer, technology assessment, and economic development). Detailed information about the journal's aims and scope on specific topics can be found in Technology in Society Briefings, accessible via our Special Issues and Article Collections.