Ferdous Sharifi , Shaahin Hessabi , Young Choon Lee
{"title":"基于集群的合作雾缓存,用于多个内容提供商的可扩展编码视频","authors":"Ferdous Sharifi , Shaahin Hessabi , Young Choon Lee","doi":"10.1016/j.iot.2024.101380","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient content caching in video streaming services is important for improving user experience as well as reducing network bandwidth consumption. Fog caching combined with scalable video coding (SVC) has the potential to significantly improve caching efficiency. However, challenges such as the limited storage capacity of fog nodes and determining the optimal number of SVC layers must be overcome for their effective adoption. This becomes more complicated with multiple content providers requiring shared cache resources. To the best of our knowledge, no existing research has simultaneously tackled all these aspects. In this paper, we present Cluster-based Cooperative Fog Caching (CCo-Fog), a holistic caching strategy that enables multiple content providers to share the scarce storage of fog nodes in a multi-tier fog network to judiciously cache SVC videos in a cooperative manner. In particular, CCo-Fog consists of a cluster-based storage partitioning method and tier-wise cooperative content placement policies. The partitioning method distributes the storage of each fog node to multiple content providers for users clustered based on their population density and their proximity to fog nodes. The content placement policies determine the optimal number of SVC layers of each video for different tiers of the fog network by solving a latency-aware content placement optimization problem. Our evaluations on a real-world dataset and various configurations demonstrate the efficacy of CCo-Fog, showing a reduction in latency by about 60% and an increase in fog hit ratio by about 20% on average, compared to state-of-the-art caching strategies.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101380"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster-based cooperative fog caching for scalable coded videos of multiple content providers\",\"authors\":\"Ferdous Sharifi , Shaahin Hessabi , Young Choon Lee\",\"doi\":\"10.1016/j.iot.2024.101380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient content caching in video streaming services is important for improving user experience as well as reducing network bandwidth consumption. Fog caching combined with scalable video coding (SVC) has the potential to significantly improve caching efficiency. However, challenges such as the limited storage capacity of fog nodes and determining the optimal number of SVC layers must be overcome for their effective adoption. This becomes more complicated with multiple content providers requiring shared cache resources. To the best of our knowledge, no existing research has simultaneously tackled all these aspects. In this paper, we present Cluster-based Cooperative Fog Caching (CCo-Fog), a holistic caching strategy that enables multiple content providers to share the scarce storage of fog nodes in a multi-tier fog network to judiciously cache SVC videos in a cooperative manner. In particular, CCo-Fog consists of a cluster-based storage partitioning method and tier-wise cooperative content placement policies. The partitioning method distributes the storage of each fog node to multiple content providers for users clustered based on their population density and their proximity to fog nodes. The content placement policies determine the optimal number of SVC layers of each video for different tiers of the fog network by solving a latency-aware content placement optimization problem. Our evaluations on a real-world dataset and various configurations demonstrate the efficacy of CCo-Fog, showing a reduction in latency by about 60% and an increase in fog hit ratio by about 20% on average, compared to state-of-the-art caching strategies.</div></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"28 \",\"pages\":\"Article 101380\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660524003214\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524003214","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Cluster-based cooperative fog caching for scalable coded videos of multiple content providers
Efficient content caching in video streaming services is important for improving user experience as well as reducing network bandwidth consumption. Fog caching combined with scalable video coding (SVC) has the potential to significantly improve caching efficiency. However, challenges such as the limited storage capacity of fog nodes and determining the optimal number of SVC layers must be overcome for their effective adoption. This becomes more complicated with multiple content providers requiring shared cache resources. To the best of our knowledge, no existing research has simultaneously tackled all these aspects. In this paper, we present Cluster-based Cooperative Fog Caching (CCo-Fog), a holistic caching strategy that enables multiple content providers to share the scarce storage of fog nodes in a multi-tier fog network to judiciously cache SVC videos in a cooperative manner. In particular, CCo-Fog consists of a cluster-based storage partitioning method and tier-wise cooperative content placement policies. The partitioning method distributes the storage of each fog node to multiple content providers for users clustered based on their population density and their proximity to fog nodes. The content placement policies determine the optimal number of SVC layers of each video for different tiers of the fog network by solving a latency-aware content placement optimization problem. Our evaluations on a real-world dataset and various configurations demonstrate the efficacy of CCo-Fog, showing a reduction in latency by about 60% and an increase in fog hit ratio by about 20% on average, compared to state-of-the-art caching strategies.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.