面向工业物联网的可解释无监督异常检测框架

IF 4.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Computers & Security Pub Date : 2024-09-25 DOI:10.1016/j.cose.2024.104130
Yilixiati Abudurexiti , Guangjie Han , Fan Zhang , Li Liu
{"title":"面向工业物联网的可解释无监督异常检测框架","authors":"Yilixiati Abudurexiti ,&nbsp;Guangjie Han ,&nbsp;Fan Zhang ,&nbsp;Li Liu","doi":"10.1016/j.cose.2024.104130","DOIUrl":null,"url":null,"abstract":"<div><div>Industrial Internet of Things (IIoT) systems require effective anomaly detection techniques to ensure optimal operational efficiency. However, constructing a suitable anomaly detection framework for IIoT poses challenges due to the scarcity of labeled data. Additionally, most existing anomaly detection frameworks lack interpretability. To tackle these issues, an innovative unsupervised framework based on time series data analysis is proposed. This framework initially detects anomalous patterns in IIoT sensor data by extracting local features. An improved Time Convolutional Network (TCN) and Kolmogorov–Arnold Network (KAN) based Variational Auto-Encoder (VAE) is then constructed to capture long-term dependencies. The framework is trained in an unsupervised manner and interpreted using Explainable Artificial Intelligence (XAI) techniques. This approach offers insightful explanations regarding the importance of features, thereby facilitating informed decision-making and enhancements. Experimental results demonstrate that the framework is capable of extracting informative features and capturing long-term dependencies. This enables efficient anomaly detection in complex, dynamic industrial systems, surpassing other unsupervised methods.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"148 ","pages":"Article 104130"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An explainable unsupervised anomaly detection framework for Industrial Internet of Things\",\"authors\":\"Yilixiati Abudurexiti ,&nbsp;Guangjie Han ,&nbsp;Fan Zhang ,&nbsp;Li Liu\",\"doi\":\"10.1016/j.cose.2024.104130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Industrial Internet of Things (IIoT) systems require effective anomaly detection techniques to ensure optimal operational efficiency. However, constructing a suitable anomaly detection framework for IIoT poses challenges due to the scarcity of labeled data. Additionally, most existing anomaly detection frameworks lack interpretability. To tackle these issues, an innovative unsupervised framework based on time series data analysis is proposed. This framework initially detects anomalous patterns in IIoT sensor data by extracting local features. An improved Time Convolutional Network (TCN) and Kolmogorov–Arnold Network (KAN) based Variational Auto-Encoder (VAE) is then constructed to capture long-term dependencies. The framework is trained in an unsupervised manner and interpreted using Explainable Artificial Intelligence (XAI) techniques. This approach offers insightful explanations regarding the importance of features, thereby facilitating informed decision-making and enhancements. Experimental results demonstrate that the framework is capable of extracting informative features and capturing long-term dependencies. This enables efficient anomaly detection in complex, dynamic industrial systems, surpassing other unsupervised methods.</div></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":\"148 \",\"pages\":\"Article 104130\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167404824004358\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824004358","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

工业物联网(IIoT)系统需要有效的异常检测技术,以确保最佳的运行效率。然而,由于标注数据稀缺,为 IIoT 构建合适的异常检测框架面临着挑战。此外,大多数现有的异常检测框架缺乏可解释性。为了解决这些问题,我们提出了一种基于时间序列数据分析的创新型无监督框架。该框架最初通过提取局部特征来检测物联网传感器数据中的异常模式。然后,构建基于时间卷积网络(TCN)和科尔莫哥罗德网络(KAN)的改进型变异自动编码器(VAE),以捕捉长期依赖关系。该框架以无监督方式进行训练,并使用可解释人工智能(XAI)技术进行解释。这种方法能就特征的重要性提供有见地的解释,从而促进知情决策和改进。实验结果表明,该框架能够提取信息特征并捕捉长期依赖关系。这使得在复杂、动态的工业系统中进行高效的异常检测成为可能,超越了其他无监督方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An explainable unsupervised anomaly detection framework for Industrial Internet of Things
Industrial Internet of Things (IIoT) systems require effective anomaly detection techniques to ensure optimal operational efficiency. However, constructing a suitable anomaly detection framework for IIoT poses challenges due to the scarcity of labeled data. Additionally, most existing anomaly detection frameworks lack interpretability. To tackle these issues, an innovative unsupervised framework based on time series data analysis is proposed. This framework initially detects anomalous patterns in IIoT sensor data by extracting local features. An improved Time Convolutional Network (TCN) and Kolmogorov–Arnold Network (KAN) based Variational Auto-Encoder (VAE) is then constructed to capture long-term dependencies. The framework is trained in an unsupervised manner and interpreted using Explainable Artificial Intelligence (XAI) techniques. This approach offers insightful explanations regarding the importance of features, thereby facilitating informed decision-making and enhancements. Experimental results demonstrate that the framework is capable of extracting informative features and capturing long-term dependencies. This enables efficient anomaly detection in complex, dynamic industrial systems, surpassing other unsupervised methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Security
Computers & Security 工程技术-计算机:信息系统
CiteScore
12.40
自引率
7.10%
发文量
365
审稿时长
10.7 months
期刊介绍: Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world. Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.
期刊最新文献
Beyond the sandbox: Leveraging symbolic execution for evasive malware classification Trust my IDS: An explainable AI integrated deep learning-based transparent threat detection system for industrial networks PdGAT-ID: An intrusion detection method for industrial control systems based on periodic extraction and spatiotemporal graph attention Dynamic trigger-based attacks against next-generation IoT malware family classifiers Assessing cybersecurity awareness among bank employees: A multi-stage analytical approach using PLS-SEM, ANN, and fsQCA in a developing country context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1