裂隙多孔介质中两相流的混合上风方案

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2024-10-09 DOI:10.1016/j.cma.2024.117437
{"title":"裂隙多孔介质中两相流的混合上风方案","authors":"","doi":"10.1016/j.cma.2024.117437","DOIUrl":null,"url":null,"abstract":"<div><div>Simulating the flow of two fluid phases in porous media is a challenging task, especially when fractures are included in the simulation. Fractures may have highly heterogeneous properties compared to the surrounding rock matrix, significantly affecting fluid flow, and at the same time hydraulic apertures that are much smaller than any other characteristic sizes in the domain. Generally, flow simulators face difficulties with counter-current flow, generated by gravity and pressure gradients, which hinders the convergence of non-linear solvers (Newton).</div><div>In this work, we model the fracture geometry with a mixed-dimensional discrete fracture network, thus lightening the computational burden associated to an equi-dimensional representation. We address the issue of counter-current flows with appropriate spatial discretization of the advective fluid fluxes, with the aim of improving the convergence speed of the non-linear solver. In particular, the extension of the hybrid upwinding to the mixed-dimensional framework, with the use of a phase potential upstreaming at the interfaces of subdomains.</div><div>We test the method across several cases with different flow regimes and fracture network geometries. Results show robustness of the chosen discretization and a consistent improvements, in terms of Newton iterations, compared to using phase potential upstreaming everywhere.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid upwind scheme for two-phase flow in fractured porous media\",\"authors\":\"\",\"doi\":\"10.1016/j.cma.2024.117437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Simulating the flow of two fluid phases in porous media is a challenging task, especially when fractures are included in the simulation. Fractures may have highly heterogeneous properties compared to the surrounding rock matrix, significantly affecting fluid flow, and at the same time hydraulic apertures that are much smaller than any other characteristic sizes in the domain. Generally, flow simulators face difficulties with counter-current flow, generated by gravity and pressure gradients, which hinders the convergence of non-linear solvers (Newton).</div><div>In this work, we model the fracture geometry with a mixed-dimensional discrete fracture network, thus lightening the computational burden associated to an equi-dimensional representation. We address the issue of counter-current flows with appropriate spatial discretization of the advective fluid fluxes, with the aim of improving the convergence speed of the non-linear solver. In particular, the extension of the hybrid upwinding to the mixed-dimensional framework, with the use of a phase potential upstreaming at the interfaces of subdomains.</div><div>We test the method across several cases with different flow regimes and fracture network geometries. Results show robustness of the chosen discretization and a consistent improvements, in terms of Newton iterations, compared to using phase potential upstreaming everywhere.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524006923\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524006923","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

模拟多孔介质中两相流体的流动是一项具有挑战性的任务,尤其是当模拟中包含裂缝时。与周围的岩石基质相比,裂缝可能具有高度异质性,从而对流体流动产生重大影响,同时,裂缝的水力孔径也远小于域中其他特征尺寸。一般来说,流动模拟器在处理由重力和压力梯度产生的逆流时会遇到困难,这阻碍了非线性求解器(牛顿)的收敛。在这项工作中,我们用混合维离散断裂网络来模拟断裂几何形状,从而减轻了等维表示的计算负担。我们通过对平流流体通量进行适当的空间离散化来解决逆流问题,目的是提高非线性求解器的收敛速度。我们在不同流态和断裂网络几何形状的多个案例中测试了该方法。结果表明,所选离散方法具有稳健性,与在所有地方都使用相位逆流法相比,牛顿迭代的改进效果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid upwind scheme for two-phase flow in fractured porous media
Simulating the flow of two fluid phases in porous media is a challenging task, especially when fractures are included in the simulation. Fractures may have highly heterogeneous properties compared to the surrounding rock matrix, significantly affecting fluid flow, and at the same time hydraulic apertures that are much smaller than any other characteristic sizes in the domain. Generally, flow simulators face difficulties with counter-current flow, generated by gravity and pressure gradients, which hinders the convergence of non-linear solvers (Newton).
In this work, we model the fracture geometry with a mixed-dimensional discrete fracture network, thus lightening the computational burden associated to an equi-dimensional representation. We address the issue of counter-current flows with appropriate spatial discretization of the advective fluid fluxes, with the aim of improving the convergence speed of the non-linear solver. In particular, the extension of the hybrid upwinding to the mixed-dimensional framework, with the use of a phase potential upstreaming at the interfaces of subdomains.
We test the method across several cases with different flow regimes and fracture network geometries. Results show robustness of the chosen discretization and a consistent improvements, in terms of Newton iterations, compared to using phase potential upstreaming everywhere.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Peridynamic modelling of time-dependent behaviour and creep damage in hyper-viscoelastic solids with pre-cracks Modeling pulmonary perfusion and gas exchange in alveolar microstructures Data-driven projection pursuit adaptation of polynomial chaos expansions for dependent high-dimensional parameters A novel global prediction framework for multi-response models in reliability engineering using adaptive sampling and active subspace methods Modeling via peridynamics for damage and failure of hyperelastic composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1