{"title":"裂隙多孔介质中两相流的混合上风方案","authors":"","doi":"10.1016/j.cma.2024.117437","DOIUrl":null,"url":null,"abstract":"<div><div>Simulating the flow of two fluid phases in porous media is a challenging task, especially when fractures are included in the simulation. Fractures may have highly heterogeneous properties compared to the surrounding rock matrix, significantly affecting fluid flow, and at the same time hydraulic apertures that are much smaller than any other characteristic sizes in the domain. Generally, flow simulators face difficulties with counter-current flow, generated by gravity and pressure gradients, which hinders the convergence of non-linear solvers (Newton).</div><div>In this work, we model the fracture geometry with a mixed-dimensional discrete fracture network, thus lightening the computational burden associated to an equi-dimensional representation. We address the issue of counter-current flows with appropriate spatial discretization of the advective fluid fluxes, with the aim of improving the convergence speed of the non-linear solver. In particular, the extension of the hybrid upwinding to the mixed-dimensional framework, with the use of a phase potential upstreaming at the interfaces of subdomains.</div><div>We test the method across several cases with different flow regimes and fracture network geometries. Results show robustness of the chosen discretization and a consistent improvements, in terms of Newton iterations, compared to using phase potential upstreaming everywhere.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid upwind scheme for two-phase flow in fractured porous media\",\"authors\":\"\",\"doi\":\"10.1016/j.cma.2024.117437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Simulating the flow of two fluid phases in porous media is a challenging task, especially when fractures are included in the simulation. Fractures may have highly heterogeneous properties compared to the surrounding rock matrix, significantly affecting fluid flow, and at the same time hydraulic apertures that are much smaller than any other characteristic sizes in the domain. Generally, flow simulators face difficulties with counter-current flow, generated by gravity and pressure gradients, which hinders the convergence of non-linear solvers (Newton).</div><div>In this work, we model the fracture geometry with a mixed-dimensional discrete fracture network, thus lightening the computational burden associated to an equi-dimensional representation. We address the issue of counter-current flows with appropriate spatial discretization of the advective fluid fluxes, with the aim of improving the convergence speed of the non-linear solver. In particular, the extension of the hybrid upwinding to the mixed-dimensional framework, with the use of a phase potential upstreaming at the interfaces of subdomains.</div><div>We test the method across several cases with different flow regimes and fracture network geometries. Results show robustness of the chosen discretization and a consistent improvements, in terms of Newton iterations, compared to using phase potential upstreaming everywhere.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524006923\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524006923","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A hybrid upwind scheme for two-phase flow in fractured porous media
Simulating the flow of two fluid phases in porous media is a challenging task, especially when fractures are included in the simulation. Fractures may have highly heterogeneous properties compared to the surrounding rock matrix, significantly affecting fluid flow, and at the same time hydraulic apertures that are much smaller than any other characteristic sizes in the domain. Generally, flow simulators face difficulties with counter-current flow, generated by gravity and pressure gradients, which hinders the convergence of non-linear solvers (Newton).
In this work, we model the fracture geometry with a mixed-dimensional discrete fracture network, thus lightening the computational burden associated to an equi-dimensional representation. We address the issue of counter-current flows with appropriate spatial discretization of the advective fluid fluxes, with the aim of improving the convergence speed of the non-linear solver. In particular, the extension of the hybrid upwinding to the mixed-dimensional framework, with the use of a phase potential upstreaming at the interfaces of subdomains.
We test the method across several cases with different flow regimes and fracture network geometries. Results show robustness of the chosen discretization and a consistent improvements, in terms of Newton iterations, compared to using phase potential upstreaming everywhere.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.