变异贝叶斯代用建模在稳健设计优化中的应用

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2024-10-08 DOI:10.1016/j.cma.2024.117423
{"title":"变异贝叶斯代用建模在稳健设计优化中的应用","authors":"","doi":"10.1016/j.cma.2024.117423","DOIUrl":null,"url":null,"abstract":"<div><div>Surrogate models provide a quick-to-evaluate approximation to complex computational models and are essential for multi-query problems like design optimisation. The inputs of current deterministic computational models are usually high-dimensional and uncertain. We consider Bayesian inference for constructing statistical surrogates with input uncertainties and intrinsic dimensionality reduction. The surrogate is trained by fitting to data obtained from a deterministic computational model. The assumed prior probability density of the surrogate is a Gaussian process. We determine the respective posterior probability density and parameters of the posited statistical model using variational Bayes. The non-Gaussian posterior is approximated by a Gaussian trial density with free variational parameters and the discrepancy between them is measured using the Kullback–Leibler (KL) divergence. We employ the stochastic gradient method to compute the variational parameters and other statistical model parameters by minimising the KL divergence. We demonstrate the accuracy and versatility of the proposed reduced dimension variational Gaussian process (RDVGP) surrogate on illustrative and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational Bayesian surrogate modelling with application to robust design optimisation\",\"authors\":\"\",\"doi\":\"10.1016/j.cma.2024.117423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Surrogate models provide a quick-to-evaluate approximation to complex computational models and are essential for multi-query problems like design optimisation. The inputs of current deterministic computational models are usually high-dimensional and uncertain. We consider Bayesian inference for constructing statistical surrogates with input uncertainties and intrinsic dimensionality reduction. The surrogate is trained by fitting to data obtained from a deterministic computational model. The assumed prior probability density of the surrogate is a Gaussian process. We determine the respective posterior probability density and parameters of the posited statistical model using variational Bayes. The non-Gaussian posterior is approximated by a Gaussian trial density with free variational parameters and the discrepancy between them is measured using the Kullback–Leibler (KL) divergence. We employ the stochastic gradient method to compute the variational parameters and other statistical model parameters by minimising the KL divergence. We demonstrate the accuracy and versatility of the proposed reduced dimension variational Gaussian process (RDVGP) surrogate on illustrative and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524006789\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524006789","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

代用模型为复杂的计算模型提供了可快速评估的近似值,对于设计优化等多查询问题至关重要。当前确定性计算模型的输入通常是高维和不确定的。我们考虑用贝叶斯推理来构建具有输入不确定性和内在降维的统计代用模型。通过拟合从确定性计算模型中获取的数据来训练代用模型。假设代用指标的先验概率密度是一个高斯过程。我们使用变异贝叶斯确定各自的后验概率密度和假设统计模型的参数。非高斯后验近似于带有自由变异参数的高斯试验密度,两者之间的差异用 Kullback-Leibler (KL) 分歧来衡量。我们采用随机梯度法,通过最小化 KL 分歧来计算变异参数和其他统计模型参数。我们在成本函数取决于模型输出的均值和标准偏差的加权和的示例性稳健结构优化问题上,证明了所提出的降维变分高斯过程(RDVGP)代理的准确性和多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variational Bayesian surrogate modelling with application to robust design optimisation
Surrogate models provide a quick-to-evaluate approximation to complex computational models and are essential for multi-query problems like design optimisation. The inputs of current deterministic computational models are usually high-dimensional and uncertain. We consider Bayesian inference for constructing statistical surrogates with input uncertainties and intrinsic dimensionality reduction. The surrogate is trained by fitting to data obtained from a deterministic computational model. The assumed prior probability density of the surrogate is a Gaussian process. We determine the respective posterior probability density and parameters of the posited statistical model using variational Bayes. The non-Gaussian posterior is approximated by a Gaussian trial density with free variational parameters and the discrepancy between them is measured using the Kullback–Leibler (KL) divergence. We employ the stochastic gradient method to compute the variational parameters and other statistical model parameters by minimising the KL divergence. We demonstrate the accuracy and versatility of the proposed reduced dimension variational Gaussian process (RDVGP) surrogate on illustrative and robust structural optimisation problems where cost functions depend on a weighted sum of the mean and standard deviation of model outputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Peridynamic modelling of time-dependent behaviour and creep damage in hyper-viscoelastic solids with pre-cracks Modeling pulmonary perfusion and gas exchange in alveolar microstructures Data-driven projection pursuit adaptation of polynomial chaos expansions for dependent high-dimensional parameters A novel global prediction framework for multi-response models in reliability engineering using adaptive sampling and active subspace methods Modeling via peridynamics for damage and failure of hyperelastic composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1