Michael Grohs , Peter Pfeiffer , Jana-Rebecca Rehse
{"title":"主动一致性检查:预测业务流程偏差的方法","authors":"Michael Grohs , Peter Pfeiffer , Jana-Rebecca Rehse","doi":"10.1016/j.is.2024.102461","DOIUrl":null,"url":null,"abstract":"<div><div>Modern business processes are subject to an increasing number of external and internal regulations. Compliance with these regulations is crucial for the success of organizations. To ensure this compliance, process managers can identify and mitigate deviations between the predefined process behavior and the executed process instances by means of conformance checking techniques. However, these techniques are inherently reactive, meaning that they can only detect deviations after they have occurred. It would be desirable to detect and mitigate deviations before they occur, enabling managers to proactively ensure compliance of running process instances. In this paper, we propose Business Process Deviation Prediction (BPDP), a novel predictive approach that relies on a supervised machine learning model to predict which deviations can be expected in the future of running process instances. BPDP is able to predict individual deviations as well as deviation patterns. Further, it provides the user with a list of potential reasons for predicted deviations. Our evaluation shows that BPDP outperforms existing methods for deviation prediction. Following the idea of action-oriented process mining, BPDP thus enables process managers to prevent deviations in early stages of running process instances.</div></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"127 ","pages":"Article 102461"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proactive conformance checking: An approach for predicting deviations in business processes\",\"authors\":\"Michael Grohs , Peter Pfeiffer , Jana-Rebecca Rehse\",\"doi\":\"10.1016/j.is.2024.102461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modern business processes are subject to an increasing number of external and internal regulations. Compliance with these regulations is crucial for the success of organizations. To ensure this compliance, process managers can identify and mitigate deviations between the predefined process behavior and the executed process instances by means of conformance checking techniques. However, these techniques are inherently reactive, meaning that they can only detect deviations after they have occurred. It would be desirable to detect and mitigate deviations before they occur, enabling managers to proactively ensure compliance of running process instances. In this paper, we propose Business Process Deviation Prediction (BPDP), a novel predictive approach that relies on a supervised machine learning model to predict which deviations can be expected in the future of running process instances. BPDP is able to predict individual deviations as well as deviation patterns. Further, it provides the user with a list of potential reasons for predicted deviations. Our evaluation shows that BPDP outperforms existing methods for deviation prediction. Following the idea of action-oriented process mining, BPDP thus enables process managers to prevent deviations in early stages of running process instances.</div></div>\",\"PeriodicalId\":50363,\"journal\":{\"name\":\"Information Systems\",\"volume\":\"127 \",\"pages\":\"Article 102461\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306437924001194\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924001194","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Proactive conformance checking: An approach for predicting deviations in business processes
Modern business processes are subject to an increasing number of external and internal regulations. Compliance with these regulations is crucial for the success of organizations. To ensure this compliance, process managers can identify and mitigate deviations between the predefined process behavior and the executed process instances by means of conformance checking techniques. However, these techniques are inherently reactive, meaning that they can only detect deviations after they have occurred. It would be desirable to detect and mitigate deviations before they occur, enabling managers to proactively ensure compliance of running process instances. In this paper, we propose Business Process Deviation Prediction (BPDP), a novel predictive approach that relies on a supervised machine learning model to predict which deviations can be expected in the future of running process instances. BPDP is able to predict individual deviations as well as deviation patterns. Further, it provides the user with a list of potential reasons for predicted deviations. Our evaluation shows that BPDP outperforms existing methods for deviation prediction. Following the idea of action-oriented process mining, BPDP thus enables process managers to prevent deviations in early stages of running process instances.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.