{"title":"为在镍支撑沸石催化剂上利用生物衍生甘油进行二氧化碳转移加氢铺平道路","authors":"","doi":"10.1016/j.apcata.2024.119971","DOIUrl":null,"url":null,"abstract":"<div><div>The CO<sub>2</sub> transfer hydrogenation with bio-glycerol over a Ni-zeolite was systematically studied to produce formic and lactic acids. The alkaline hydrothermal reactions without a catalyst and with Ni-zeolite heterogeneous catalyst were explored, focusing on the effects of base types and concentrations, reaction atmosphere and temperature. In alkaline hydrothermal reactions without catalyst, NaOH demonstrated superior performance at 1 M. A Ni/NaZSM-5 catalyst showed astounding performance giving 9.3 mol-L<sup>−1</sup>-g<sup>−1</sup> lactic acid and 6.5 mol-L<sup>−1</sup>-g<sup>−1</sup> formic acid at 250 °C after 2 h. Notably, the zeolite showed resistance to the highly basic conditions of the reaction medium. For the first time, CO<sub>2</sub> conversion in aqueous phase was reported addressing the complexity of CO<sub>2</sub> solubility. A reaction network was proposed including the diverse glycerol transformations not yet studied for this system. Overall, this study sheds light on the understanding of this complex reaction system and the potential of Ni-supported zeolites for sustainable CO<sub>2</sub> utilisation.</div></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paving the way to transfer hydrogenation of CO2 with bio-derived glycerol over Ni supported zeolite catalysts\",\"authors\":\"\",\"doi\":\"10.1016/j.apcata.2024.119971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The CO<sub>2</sub> transfer hydrogenation with bio-glycerol over a Ni-zeolite was systematically studied to produce formic and lactic acids. The alkaline hydrothermal reactions without a catalyst and with Ni-zeolite heterogeneous catalyst were explored, focusing on the effects of base types and concentrations, reaction atmosphere and temperature. In alkaline hydrothermal reactions without catalyst, NaOH demonstrated superior performance at 1 M. A Ni/NaZSM-5 catalyst showed astounding performance giving 9.3 mol-L<sup>−1</sup>-g<sup>−1</sup> lactic acid and 6.5 mol-L<sup>−1</sup>-g<sup>−1</sup> formic acid at 250 °C after 2 h. Notably, the zeolite showed resistance to the highly basic conditions of the reaction medium. For the first time, CO<sub>2</sub> conversion in aqueous phase was reported addressing the complexity of CO<sub>2</sub> solubility. A reaction network was proposed including the diverse glycerol transformations not yet studied for this system. Overall, this study sheds light on the understanding of this complex reaction system and the potential of Ni-supported zeolites for sustainable CO<sub>2</sub> utilisation.</div></div>\",\"PeriodicalId\":243,\"journal\":{\"name\":\"Applied Catalysis A: General\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis A: General\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926860X24004162\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X24004162","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
系统研究了生物甘油在镍沸石上的二氧化碳转移加氢反应,以生成甲酸和乳酸。研究探讨了不使用催化剂和使用镍沸石异质催化剂的碱性水热反应,重点是碱的类型和浓度、反应气氛和温度的影响。在不使用催化剂的碱性水热反应中,1 M 的 NaOH 表现出更优越的性能。Ni/NaZSM-5 催化剂表现出惊人的性能,2 小时后,在 250 °C 下可生成 9.3 mol-L-1-g-1 乳酸和 6.5 mol-L-1-g-1 甲酸。值得注意的是,这种沸石对反应介质的高碱性条件具有耐受性。这是首次报道水相中的二氧化碳转化,解决了二氧化碳溶解度的复杂性。研究还提出了一个反应网络,其中包括该体系中尚未研究过的各种甘油转化。总之,这项研究有助于人们了解这一复杂的反应体系,以及镍支撑沸石在可持续利用二氧化碳方面的潜力。
Paving the way to transfer hydrogenation of CO2 with bio-derived glycerol over Ni supported zeolite catalysts
The CO2 transfer hydrogenation with bio-glycerol over a Ni-zeolite was systematically studied to produce formic and lactic acids. The alkaline hydrothermal reactions without a catalyst and with Ni-zeolite heterogeneous catalyst were explored, focusing on the effects of base types and concentrations, reaction atmosphere and temperature. In alkaline hydrothermal reactions without catalyst, NaOH demonstrated superior performance at 1 M. A Ni/NaZSM-5 catalyst showed astounding performance giving 9.3 mol-L−1-g−1 lactic acid and 6.5 mol-L−1-g−1 formic acid at 250 °C after 2 h. Notably, the zeolite showed resistance to the highly basic conditions of the reaction medium. For the first time, CO2 conversion in aqueous phase was reported addressing the complexity of CO2 solubility. A reaction network was proposed including the diverse glycerol transformations not yet studied for this system. Overall, this study sheds light on the understanding of this complex reaction system and the potential of Ni-supported zeolites for sustainable CO2 utilisation.
期刊介绍:
Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications.
Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.