用于有效选择医疗高光谱波段的新型离散重力搜索算法

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Journal of The Franklin Institute-engineering and Applied Mathematics Pub Date : 2024-09-23 DOI:10.1016/j.jfranklin.2024.107269
Chenglong Zhang , Xiaopeng Ma , Aizhu Zhang , Bin Yan , Kai Zhao , Qiyuan Cheng
{"title":"用于有效选择医疗高光谱波段的新型离散重力搜索算法","authors":"Chenglong Zhang ,&nbsp;Xiaopeng Ma ,&nbsp;Aizhu Zhang ,&nbsp;Bin Yan ,&nbsp;Kai Zhao ,&nbsp;Qiyuan Cheng","doi":"10.1016/j.jfranklin.2024.107269","DOIUrl":null,"url":null,"abstract":"<div><div>Medical hyperspectral imaging present a promising avenue for non-invasive diagnostic methods for diseases. Nonetheless, the sparsity of medical hyperspectral data within high-dimensional spaces introduces the “curse of dimensionality”, which diminishes the efficiency and accuracy of data processing efforts. Therefore, spectral dimensionality reduction emerges as an essential process in the analysis and utilization of MHSIs data. To retain the intrinsic properties of the spectral bands, an effective unsupervised band selection algorithm is proposed leveraging the gravitational search algorithm (GSA-UBS) to identify the optimal band subset. Taking into account the informational content and redundancy among candidate bands, a comprehensive evaluation criterion is established that incorporates a band distance matrix and an information entropy vector. Additionally, a straightforward discrete search strategy is developed that enables gravitational search algorithm to directly retrieve the original sequence numbers of the selected bands, bypassing the conventional 0–1 band weighting approach. The extensive evaluation of GSA-UBS on three publicly available <span><math><mrow><mi>i</mi><mi>n</mi><mi>v</mi><mi>i</mi><mi>v</mi><mi>o</mi></mrow></math></span> brain cancer MHSIs datasets and a remote sensing hyperspectral image demonstrates its superior performance compared to various state-of-the-art methods. The source code for GSA-UBS can be accessed at <span><span>https://github.com/zhangchenglong1116/GSA_UBS</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"361 18","pages":"Article 107269"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel discretized gravitational search algorithm for effective medical hyperspectral band selection\",\"authors\":\"Chenglong Zhang ,&nbsp;Xiaopeng Ma ,&nbsp;Aizhu Zhang ,&nbsp;Bin Yan ,&nbsp;Kai Zhao ,&nbsp;Qiyuan Cheng\",\"doi\":\"10.1016/j.jfranklin.2024.107269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Medical hyperspectral imaging present a promising avenue for non-invasive diagnostic methods for diseases. Nonetheless, the sparsity of medical hyperspectral data within high-dimensional spaces introduces the “curse of dimensionality”, which diminishes the efficiency and accuracy of data processing efforts. Therefore, spectral dimensionality reduction emerges as an essential process in the analysis and utilization of MHSIs data. To retain the intrinsic properties of the spectral bands, an effective unsupervised band selection algorithm is proposed leveraging the gravitational search algorithm (GSA-UBS) to identify the optimal band subset. Taking into account the informational content and redundancy among candidate bands, a comprehensive evaluation criterion is established that incorporates a band distance matrix and an information entropy vector. Additionally, a straightforward discrete search strategy is developed that enables gravitational search algorithm to directly retrieve the original sequence numbers of the selected bands, bypassing the conventional 0–1 band weighting approach. The extensive evaluation of GSA-UBS on three publicly available <span><math><mrow><mi>i</mi><mi>n</mi><mi>v</mi><mi>i</mi><mi>v</mi><mi>o</mi></mrow></math></span> brain cancer MHSIs datasets and a remote sensing hyperspectral image demonstrates its superior performance compared to various state-of-the-art methods. The source code for GSA-UBS can be accessed at <span><span>https://github.com/zhangchenglong1116/GSA_UBS</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"361 18\",\"pages\":\"Article 107269\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003224006902\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003224006902","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

医学高光谱成像为疾病的非侵入性诊断方法提供了一个前景广阔的途径。然而,医学高光谱数据在高维空间中的稀疏性带来了 "维度诅咒",降低了数据处理工作的效率和准确性。因此,光谱降维成为分析和利用 MHSIs 数据的重要过程。为了保留光谱波段的固有特性,利用引力搜索算法(GSA-UBS)提出了一种有效的无监督波段选择算法,以确定最佳波段子集。考虑到候选波段之间的信息含量和冗余度,建立了一个包含波段距离矩阵和信息熵向量的综合评价标准。此外,还开发了一种直接的离散搜索策略,使引力搜索算法能够绕过传统的 0-1 波段加权方法,直接检索所选波段的原始序列号。GSA-UBS 在三个公开的活体脑癌 MHSIs 数据集和一幅遥感高光谱图像上进行了广泛的评估,证明其性能优于各种最先进的方法。GSA-UBS 的源代码可通过 https://github.com/zhangchenglong1116/GSA_UBS 访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel discretized gravitational search algorithm for effective medical hyperspectral band selection
Medical hyperspectral imaging present a promising avenue for non-invasive diagnostic methods for diseases. Nonetheless, the sparsity of medical hyperspectral data within high-dimensional spaces introduces the “curse of dimensionality”, which diminishes the efficiency and accuracy of data processing efforts. Therefore, spectral dimensionality reduction emerges as an essential process in the analysis and utilization of MHSIs data. To retain the intrinsic properties of the spectral bands, an effective unsupervised band selection algorithm is proposed leveraging the gravitational search algorithm (GSA-UBS) to identify the optimal band subset. Taking into account the informational content and redundancy among candidate bands, a comprehensive evaluation criterion is established that incorporates a band distance matrix and an information entropy vector. Additionally, a straightforward discrete search strategy is developed that enables gravitational search algorithm to directly retrieve the original sequence numbers of the selected bands, bypassing the conventional 0–1 band weighting approach. The extensive evaluation of GSA-UBS on three publicly available invivo brain cancer MHSIs datasets and a remote sensing hyperspectral image demonstrates its superior performance compared to various state-of-the-art methods. The source code for GSA-UBS can be accessed at https://github.com/zhangchenglong1116/GSA_UBS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
期刊最新文献
Neural network-based prescribed performance control for spacecraft formation reconfiguration with collision avoidance Fast image reconstruction method using radial harmonic Fourier moments and its application in digital watermarking Deep convolutional sparse dictionary learning for bearing fault diagnosis under variable speed condition Modified Mikhailov stability criterion for non-commensurate fractional-order neutral differential systems with delays Structural state feedback gain-scheduled tracking control based on linear parameter varying system of morphing wing UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1