CARARMA 系统的两种改进型广义扩展随机梯度算法

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Journal of The Franklin Institute-engineering and Applied Mathematics Pub Date : 2024-09-26 DOI:10.1016/j.jfranklin.2024.107295
Lingling Lv , Yulin Zhang , Quanzhen Huang , Yu Wu
{"title":"CARARMA 系统的两种改进型广义扩展随机梯度算法","authors":"Lingling Lv ,&nbsp;Yulin Zhang ,&nbsp;Quanzhen Huang ,&nbsp;Yu Wu","doi":"10.1016/j.jfranklin.2024.107295","DOIUrl":null,"url":null,"abstract":"<div><div>The paper innovatively proposes two improved generalized extended stochastic gradient (GESG) algorithms for the controlled autoregressive autoregressive moving average (CARARMA) system with autoregressive moving average (ARMA) model noise. Firstly, we propose a latest estimation based weighted generalized extended stochastic gradient (LE-WGESG) algorithm, which introduces multiple momentary corrections in the traditional parameter estimation process. By carefully adjusting the weighting coefficients of the correction quantities at different moments, the algorithm has a rapid and greater efficient convergence property. More importantly, utilizing the theory of moving data window, this paper also proposes a multi-innovation based latest estimated weighted generalized extended stochastic gradient (MI-LE-WGESG) algorithm, which can better capture the interactions among multiple correction terms and further improve the predictive ability of the model.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"361 17","pages":"Article 107295"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two improved generalized extended stochastic gradient algorithms for CARARMA systems\",\"authors\":\"Lingling Lv ,&nbsp;Yulin Zhang ,&nbsp;Quanzhen Huang ,&nbsp;Yu Wu\",\"doi\":\"10.1016/j.jfranklin.2024.107295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper innovatively proposes two improved generalized extended stochastic gradient (GESG) algorithms for the controlled autoregressive autoregressive moving average (CARARMA) system with autoregressive moving average (ARMA) model noise. Firstly, we propose a latest estimation based weighted generalized extended stochastic gradient (LE-WGESG) algorithm, which introduces multiple momentary corrections in the traditional parameter estimation process. By carefully adjusting the weighting coefficients of the correction quantities at different moments, the algorithm has a rapid and greater efficient convergence property. More importantly, utilizing the theory of moving data window, this paper also proposes a multi-innovation based latest estimated weighted generalized extended stochastic gradient (MI-LE-WGESG) algorithm, which can better capture the interactions among multiple correction terms and further improve the predictive ability of the model.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"361 17\",\"pages\":\"Article 107295\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003224007166\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003224007166","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文针对具有自回归移动平均(ARMA)模型噪声的受控自回归自回归移动平均(CARARMA)系统,创新性地提出了两种改进的广义扩展随机梯度(GESG)算法。首先,我们提出了一种基于最新估计的加权广义扩展随机梯度(LE-WGESG)算法,该算法在传统参数估计过程中引入了多个时刻修正。通过仔细调整修正量在不同时刻的加权系数,该算法具有快速和更高效的收敛特性。更重要的是,本文还利用移动数据窗理论,提出了基于多创新的最新估计加权广义扩展随机梯度(MI-LE-WGESG)算法,该算法能更好地捕捉多个修正项之间的相互作用,进一步提高模型的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two improved generalized extended stochastic gradient algorithms for CARARMA systems
The paper innovatively proposes two improved generalized extended stochastic gradient (GESG) algorithms for the controlled autoregressive autoregressive moving average (CARARMA) system with autoregressive moving average (ARMA) model noise. Firstly, we propose a latest estimation based weighted generalized extended stochastic gradient (LE-WGESG) algorithm, which introduces multiple momentary corrections in the traditional parameter estimation process. By carefully adjusting the weighting coefficients of the correction quantities at different moments, the algorithm has a rapid and greater efficient convergence property. More importantly, utilizing the theory of moving data window, this paper also proposes a multi-innovation based latest estimated weighted generalized extended stochastic gradient (MI-LE-WGESG) algorithm, which can better capture the interactions among multiple correction terms and further improve the predictive ability of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
期刊最新文献
Neural network-based prescribed performance control for spacecraft formation reconfiguration with collision avoidance Fast image reconstruction method using radial harmonic Fourier moments and its application in digital watermarking Deep convolutional sparse dictionary learning for bearing fault diagnosis under variable speed condition Modified Mikhailov stability criterion for non-commensurate fractional-order neutral differential systems with delays Structural state feedback gain-scheduled tracking control based on linear parameter varying system of morphing wing UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1