Jiguang Peng , Hanzhen Xiao , Guanyu Lai , C.L. Philip Chen
{"title":"输入约束条件下具有混合干扰的轮式移动机器人的共识形成控制","authors":"Jiguang Peng , Hanzhen Xiao , Guanyu Lai , C.L. Philip Chen","doi":"10.1016/j.jfranklin.2024.107300","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the problem of distributed consensus-based formation control for wheeled mobile robots (WMRs) under the influence of mixed disturbances, including both random noise and non-random disturbances. A consensus formation auxiliary subsystem is constructed based on the leader’s position estimated by the distributed estimator. A formation tracking subsystem for each robot is constructed based on the trajectory tracking error method. The above two subsystems are constructed into an extended formation modeling system. Further, a distributed model predictive control (DMPC) is designed to control this system without disturbance, and the controller is solved by means of a general-purpose neural network. A combination of Kalman filter (KF) and extended state observer (ESO) is intended to reduce the effect of both non-random disturbances and random noise, hence increasing the controller’s resilience to disturbances. Moreover, a composite control law is designed to ensure the controller’s effectiveness. Finally, simulation results demonstrate that the proposed control strategy is well-suited to addressing the problem, as it not only achieves accurate formation control but also effectively regulates the robot’s physical constraints while suppressing both non-random disturbances and random noise.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"361 17","pages":"Article 107300"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consensus formation control of wheeled mobile robots with mixed disturbances under input constraints\",\"authors\":\"Jiguang Peng , Hanzhen Xiao , Guanyu Lai , C.L. Philip Chen\",\"doi\":\"10.1016/j.jfranklin.2024.107300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the problem of distributed consensus-based formation control for wheeled mobile robots (WMRs) under the influence of mixed disturbances, including both random noise and non-random disturbances. A consensus formation auxiliary subsystem is constructed based on the leader’s position estimated by the distributed estimator. A formation tracking subsystem for each robot is constructed based on the trajectory tracking error method. The above two subsystems are constructed into an extended formation modeling system. Further, a distributed model predictive control (DMPC) is designed to control this system without disturbance, and the controller is solved by means of a general-purpose neural network. A combination of Kalman filter (KF) and extended state observer (ESO) is intended to reduce the effect of both non-random disturbances and random noise, hence increasing the controller’s resilience to disturbances. Moreover, a composite control law is designed to ensure the controller’s effectiveness. Finally, simulation results demonstrate that the proposed control strategy is well-suited to addressing the problem, as it not only achieves accurate formation control but also effectively regulates the robot’s physical constraints while suppressing both non-random disturbances and random noise.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"361 17\",\"pages\":\"Article 107300\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001600322400721X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001600322400721X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Consensus formation control of wheeled mobile robots with mixed disturbances under input constraints
This paper addresses the problem of distributed consensus-based formation control for wheeled mobile robots (WMRs) under the influence of mixed disturbances, including both random noise and non-random disturbances. A consensus formation auxiliary subsystem is constructed based on the leader’s position estimated by the distributed estimator. A formation tracking subsystem for each robot is constructed based on the trajectory tracking error method. The above two subsystems are constructed into an extended formation modeling system. Further, a distributed model predictive control (DMPC) is designed to control this system without disturbance, and the controller is solved by means of a general-purpose neural network. A combination of Kalman filter (KF) and extended state observer (ESO) is intended to reduce the effect of both non-random disturbances and random noise, hence increasing the controller’s resilience to disturbances. Moreover, a composite control law is designed to ensure the controller’s effectiveness. Finally, simulation results demonstrate that the proposed control strategy is well-suited to addressing the problem, as it not only achieves accurate formation control but also effectively regulates the robot’s physical constraints while suppressing both non-random disturbances and random noise.
期刊介绍:
The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.