Jinglei Gong , Xiaojun Wang , Tangqi Lv , Junliu Yang , Linhui Zhou
{"title":"区间过程载荷下不确定结构的非概率时间相关可靠性分析","authors":"Jinglei Gong , Xiaojun Wang , Tangqi Lv , Junliu Yang , Linhui Zhou","doi":"10.1016/j.probengmech.2024.103687","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a novel nonprobabilistic analysis framework is proposed to evaluate the time-dependent reliability of uncertain structures under time-varying loads. Firstly, a novel uncertainty propagation method is developed by combining interval process integration and surrogate-based interval analysis and the correlation coefficient between responses of adjacent time steps is further analyzed. Subsequently, the nonprobabilistic time-dependent reliability is analyzed base on the first-passage theory and the established interval model. Unlike existing nonprobabilistic methods that consider time-invariant external loads, the proposed method applies an interval process to describe time-varying external loads, thereby offering a broader range of applicability. Compared to existing nonprobabilistic methods that consider time-varying loads, the proposed method establishes a more refined nonprobabilistic time-dependent reliability model based on the first passage theory, achieving higher accuracy. The effectiveness and superiority of the proposed method are validated through a numerical example and an engineering application.</div></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"78 ","pages":"Article 103687"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonprobabilistic time-dependent reliability analysis for uncertain structures under interval process loads\",\"authors\":\"Jinglei Gong , Xiaojun Wang , Tangqi Lv , Junliu Yang , Linhui Zhou\",\"doi\":\"10.1016/j.probengmech.2024.103687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a novel nonprobabilistic analysis framework is proposed to evaluate the time-dependent reliability of uncertain structures under time-varying loads. Firstly, a novel uncertainty propagation method is developed by combining interval process integration and surrogate-based interval analysis and the correlation coefficient between responses of adjacent time steps is further analyzed. Subsequently, the nonprobabilistic time-dependent reliability is analyzed base on the first-passage theory and the established interval model. Unlike existing nonprobabilistic methods that consider time-invariant external loads, the proposed method applies an interval process to describe time-varying external loads, thereby offering a broader range of applicability. Compared to existing nonprobabilistic methods that consider time-varying loads, the proposed method establishes a more refined nonprobabilistic time-dependent reliability model based on the first passage theory, achieving higher accuracy. The effectiveness and superiority of the proposed method are validated through a numerical example and an engineering application.</div></div>\",\"PeriodicalId\":54583,\"journal\":{\"name\":\"Probabilistic Engineering Mechanics\",\"volume\":\"78 \",\"pages\":\"Article 103687\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probabilistic Engineering Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266892024001097\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024001097","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Nonprobabilistic time-dependent reliability analysis for uncertain structures under interval process loads
In this paper, a novel nonprobabilistic analysis framework is proposed to evaluate the time-dependent reliability of uncertain structures under time-varying loads. Firstly, a novel uncertainty propagation method is developed by combining interval process integration and surrogate-based interval analysis and the correlation coefficient between responses of adjacent time steps is further analyzed. Subsequently, the nonprobabilistic time-dependent reliability is analyzed base on the first-passage theory and the established interval model. Unlike existing nonprobabilistic methods that consider time-invariant external loads, the proposed method applies an interval process to describe time-varying external loads, thereby offering a broader range of applicability. Compared to existing nonprobabilistic methods that consider time-varying loads, the proposed method establishes a more refined nonprobabilistic time-dependent reliability model based on the first passage theory, achieving higher accuracy. The effectiveness and superiority of the proposed method are validated through a numerical example and an engineering application.
期刊介绍:
This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.