利用加速度计测量数据,从机器学习和物理启发数据驱动模型中估算切削力

Gregory W. Vogl , Yongzhi Qu , Reese Eischens , Gregory Corson , Tony Schmitz , Andrew Honeycutt , Jaydeep Karandikar , Scott Smith
{"title":"利用加速度计测量数据,从机器学习和物理启发数据驱动模型中估算切削力","authors":"Gregory W. Vogl ,&nbsp;Yongzhi Qu ,&nbsp;Reese Eischens ,&nbsp;Gregory Corson ,&nbsp;Tony Schmitz ,&nbsp;Andrew Honeycutt ,&nbsp;Jaydeep Karandikar ,&nbsp;Scott Smith","doi":"10.1016/j.procir.2024.08.361","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring cutting forces for process control may be challenging because force measurements typically require invasive instrumentation. To remedy this situation, two new methods were recently developed to estimate cutting forces in real time based on the use of on-machine accelerometer measurements. One method uses machine learning, while another uses a physics-inspired data-driven approach, to generate a model that estimates cutting forces from on-machine accelerations. The estimated forces from both approaches were compared against cutting force data collected during various milling operations on several machine tools. The results reveal the advantages and disadvantages of each model to estimate real-time cutting forces.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"126 ","pages":"Pages 318-323"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cutting force estimation from machine learning and physics-inspired data-driven models utilizing accelerometer measurements\",\"authors\":\"Gregory W. Vogl ,&nbsp;Yongzhi Qu ,&nbsp;Reese Eischens ,&nbsp;Gregory Corson ,&nbsp;Tony Schmitz ,&nbsp;Andrew Honeycutt ,&nbsp;Jaydeep Karandikar ,&nbsp;Scott Smith\",\"doi\":\"10.1016/j.procir.2024.08.361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Monitoring cutting forces for process control may be challenging because force measurements typically require invasive instrumentation. To remedy this situation, two new methods were recently developed to estimate cutting forces in real time based on the use of on-machine accelerometer measurements. One method uses machine learning, while another uses a physics-inspired data-driven approach, to generate a model that estimates cutting forces from on-machine accelerations. The estimated forces from both approaches were compared against cutting force data collected during various milling operations on several machine tools. The results reveal the advantages and disadvantages of each model to estimate real-time cutting forces.</div></div>\",\"PeriodicalId\":20535,\"journal\":{\"name\":\"Procedia CIRP\",\"volume\":\"126 \",\"pages\":\"Pages 318-323\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia CIRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212827124009338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827124009338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于力测量通常需要侵入式仪器,因此监测切削力以实现过程控制可能具有挑战性。为了解决这一问题,最近开发出了两种新方法,在使用机载加速度计测量的基础上实时估算切削力。其中一种方法使用机器学习,另一种方法使用物理学启发的数据驱动方法,生成一个模型,根据机载加速度估算切削力。我们将这两种方法估算出的切削力与在几种机床上进行各种铣削操作时收集到的切削力数据进行了比较。结果显示了每种模型在估算实时切削力方面的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cutting force estimation from machine learning and physics-inspired data-driven models utilizing accelerometer measurements
Monitoring cutting forces for process control may be challenging because force measurements typically require invasive instrumentation. To remedy this situation, two new methods were recently developed to estimate cutting forces in real time based on the use of on-machine accelerometer measurements. One method uses machine learning, while another uses a physics-inspired data-driven approach, to generate a model that estimates cutting forces from on-machine accelerations. The estimated forces from both approaches were compared against cutting force data collected during various milling operations on several machine tools. The results reveal the advantages and disadvantages of each model to estimate real-time cutting forces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
期刊最新文献
Editorial Preface Editorial Editorial Off-axis monitoring of the melt pool spatial information in Laser Metal Deposition process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1