设计用于纳米开尔文分辨率测温的光子晶体

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-10-03 DOI:10.1016/j.sna.2024.115949
Mohammad Shoghi Tekmedash , Amin Reihani
{"title":"设计用于纳米开尔文分辨率测温的光子晶体","authors":"Mohammad Shoghi Tekmedash ,&nbsp;Amin Reihani","doi":"10.1016/j.sna.2024.115949","DOIUrl":null,"url":null,"abstract":"<div><div>High-resolution thermometry is key for the development of calorimeters, bolometers, and high-stability light sources, as well as for probing dissipation and transport in microelectronics and quantum devices. Achieving nanokelvin-level temperature resolution at room temperature requires using large optical cavities, which are unsuitable for microscale integration. Here we computationally design a one-dimensional photonic crystal Band Edge Thermometer that achieves significant temperature sensitivity by combining: (i) the abrupt variation in optical properties of a direct bandgap semiconductor at the band edge, and (ii) a large quality factor in a resonant photonic structure. Two devices are designed which are constructed from GaAs/AlAs and GaN/AlN multilayer structures. The optimal sensor design features an extremely large thermoreflectance coefficient of 60.6 K<sup>−1</sup> and a thermal time constant of 1.1 µs, with a sensor thickness of only 6.7 µm. The projected thermometry noise floor is 84 nK.Hz<sup>-½</sup> for the GaAs/AlAs sensor and 35 nK.Hz<sup>-½</sup> for the GaN/AlN sensor. The designed sensor architecture is expected to enable a broad range of applications in microcalorimetry and bolometry where a high temperature resolution combined with microscale sensor footprint is required.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of photonic crystals for nanokelvin-resolution thermometry\",\"authors\":\"Mohammad Shoghi Tekmedash ,&nbsp;Amin Reihani\",\"doi\":\"10.1016/j.sna.2024.115949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-resolution thermometry is key for the development of calorimeters, bolometers, and high-stability light sources, as well as for probing dissipation and transport in microelectronics and quantum devices. Achieving nanokelvin-level temperature resolution at room temperature requires using large optical cavities, which are unsuitable for microscale integration. Here we computationally design a one-dimensional photonic crystal Band Edge Thermometer that achieves significant temperature sensitivity by combining: (i) the abrupt variation in optical properties of a direct bandgap semiconductor at the band edge, and (ii) a large quality factor in a resonant photonic structure. Two devices are designed which are constructed from GaAs/AlAs and GaN/AlN multilayer structures. The optimal sensor design features an extremely large thermoreflectance coefficient of 60.6 K<sup>−1</sup> and a thermal time constant of 1.1 µs, with a sensor thickness of only 6.7 µm. The projected thermometry noise floor is 84 nK.Hz<sup>-½</sup> for the GaAs/AlAs sensor and 35 nK.Hz<sup>-½</sup> for the GaN/AlN sensor. The designed sensor architecture is expected to enable a broad range of applications in microcalorimetry and bolometry where a high temperature resolution combined with microscale sensor footprint is required.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724009439\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724009439","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高分辨率测温是开发热量计、波长计和高稳定性光源以及探测微电子和量子设备中耗散和传输的关键。要在室温下实现纳开尔文级的温度分辨率,需要使用大型光腔,而这种光腔不适合微尺度集成。在这里,我们通过计算设计了一种一维光子晶体带边温度计,它通过结合以下两方面实现了显著的温度灵敏度:(i) 带边直接带隙半导体光学特性的突然变化;(ii) 共振光子结构中的大品质因数。我们设计了由 GaAs/AlAs 和 GaN/AlN 多层结构构成的两种装置。最佳传感器设计具有 60.6 K-1 的超大热反射系数和 1.1 µs 的热时间常数,传感器厚度仅为 6.7 µm。砷化镓/砷化镓传感器的预计测温本底噪声为 84 nK.Hz-½,氮化镓/氮化铝传感器为 35 nK.Hz-½。所设计的传感器结构有望在微量热测量和螺栓测量等需要高温度分辨率和微小传感器尺寸的领域得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of photonic crystals for nanokelvin-resolution thermometry
High-resolution thermometry is key for the development of calorimeters, bolometers, and high-stability light sources, as well as for probing dissipation and transport in microelectronics and quantum devices. Achieving nanokelvin-level temperature resolution at room temperature requires using large optical cavities, which are unsuitable for microscale integration. Here we computationally design a one-dimensional photonic crystal Band Edge Thermometer that achieves significant temperature sensitivity by combining: (i) the abrupt variation in optical properties of a direct bandgap semiconductor at the band edge, and (ii) a large quality factor in a resonant photonic structure. Two devices are designed which are constructed from GaAs/AlAs and GaN/AlN multilayer structures. The optimal sensor design features an extremely large thermoreflectance coefficient of 60.6 K−1 and a thermal time constant of 1.1 µs, with a sensor thickness of only 6.7 µm. The projected thermometry noise floor is 84 nK.Hz for the GaAs/AlAs sensor and 35 nK.Hz for the GaN/AlN sensor. The designed sensor architecture is expected to enable a broad range of applications in microcalorimetry and bolometry where a high temperature resolution combined with microscale sensor footprint is required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Corrigendum to "The hydroalcoholic extract of Nasturtium officinale reduces oxidative stress markers and increases total antioxidant capacity in patients with asthma" [J. Ethnopharmacol. 318 (2024) 116862]. Corrigendum to "Asiaticoside-nitric oxide promoting diabetic wound healing through the miRNA-21-5p/TGF-β1/SMAD7/TIMP3 signaling pathway" [J. Ethnopharmacol. 319 (2024) 117266]. Corrigendum to "The antiviral effect and potential mechanism of Houttuynia cordata Thunb. (HC) against coxsackievirus A4" [J. Ethnopharmacol. 337, part 3 (2024) 118975]. Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1