一类有时间延迟的可变系数分数扩散方程的两种快速有限差分法

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED Communications in Nonlinear Science and Numerical Simulation Pub Date : 2024-09-21 DOI:10.1016/j.cnsns.2024.108358
Xue Zhang , Xian-Ming Gu , Yong-Liang Zhao
{"title":"一类有时间延迟的可变系数分数扩散方程的两种快速有限差分法","authors":"Xue Zhang ,&nbsp;Xian-Ming Gu ,&nbsp;Yong-Liang Zhao","doi":"10.1016/j.cnsns.2024.108358","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces the fast Crank–Nicolson (CN) and compact difference schemes for solving the one- and two-dimensional fractional diffusion equations with time delay. The CN method is employed for temporal discretization, while the fractional centered difference (FCD) formula discretizes the Riesz space derivative. Additionally, a novel fourth-order scheme is developed using compact difference operators to improve accuracy. The convergence and stability of these schemes are rigorously proven. The discretized systems combining Toeplitz-like structures can be effectively solved by Krylov subspace solvers with suitable preconditioners. Each time level of these methods requires a computational complexity of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>p</mi><mo>log</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> per iteration and a memory of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>p</mi></math></span> represents the total number of grid points in space. Numerical examples are given to illustrate both the theoretical results and the computational efficiency of the fast algorithm.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two fast finite difference methods for a class of variable-coefficient fractional diffusion equations with time delay\",\"authors\":\"Xue Zhang ,&nbsp;Xian-Ming Gu ,&nbsp;Yong-Liang Zhao\",\"doi\":\"10.1016/j.cnsns.2024.108358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces the fast Crank–Nicolson (CN) and compact difference schemes for solving the one- and two-dimensional fractional diffusion equations with time delay. The CN method is employed for temporal discretization, while the fractional centered difference (FCD) formula discretizes the Riesz space derivative. Additionally, a novel fourth-order scheme is developed using compact difference operators to improve accuracy. The convergence and stability of these schemes are rigorously proven. The discretized systems combining Toeplitz-like structures can be effectively solved by Krylov subspace solvers with suitable preconditioners. Each time level of these methods requires a computational complexity of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>p</mi><mo>log</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> per iteration and a memory of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>p</mi></math></span> represents the total number of grid points in space. Numerical examples are given to illustrate both the theoretical results and the computational efficiency of the fast algorithm.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005434\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005434","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了用于求解有时间延迟的一维和二维分数扩散方程的快速 Crank-Nicolson(CN)和紧凑差分方案。CN 方法用于时间离散化,而分数中心差分 (FCD) 公式则用于离散化 Riesz 空间导数。此外,还利用紧凑差分算子开发了一种新的四阶方案,以提高精度。这些方案的收敛性和稳定性得到了严格证明。结合了类似托普利兹结构的离散化系统可以通过克雷洛夫子空间求解器和合适的预处理器有效求解。这些方法的每个时间级每次迭代所需的计算复杂度为 O(plogp),内存为 O(p),其中 p 代表空间中网格点的总数。本文给出了数值示例,以说明快速算法的理论结果和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two fast finite difference methods for a class of variable-coefficient fractional diffusion equations with time delay
This paper introduces the fast Crank–Nicolson (CN) and compact difference schemes for solving the one- and two-dimensional fractional diffusion equations with time delay. The CN method is employed for temporal discretization, while the fractional centered difference (FCD) formula discretizes the Riesz space derivative. Additionally, a novel fourth-order scheme is developed using compact difference operators to improve accuracy. The convergence and stability of these schemes are rigorously proven. The discretized systems combining Toeplitz-like structures can be effectively solved by Krylov subspace solvers with suitable preconditioners. Each time level of these methods requires a computational complexity of O(plogp) per iteration and a memory of O(p), where p represents the total number of grid points in space. Numerical examples are given to illustrate both the theoretical results and the computational efficiency of the fast algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
期刊最新文献
Fractional derivative of Hermite fractal splines on the fractional-order delayed neural networks synchronization An optimal nonlinear fractional order controller for passive/active base isolation building equipped with friction-tuned mass dampers Existence of global attractor in reaction–diffusion model of obesity-induced Alzheimer’s disease and its control strategies A stabilized finite volume method based on the rotational pressure correction projection for the time-dependent incompressible MHD equations Structure-preserving weighted BDF2 methods for anisotropic Cahn–Hilliard model: Uniform/variable-time-steps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1