{"title":"基于梯度稳定的大雷诺数不可压缩流指数 IMEX-SAV 方法的均匀误差分析","authors":"Rong An, Weiwen Wan","doi":"10.1016/j.cnsns.2024.108386","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the grad-div stabilization and scalar auxiliary variable (SAV) methods, a first-order Euler implicit/explicit finite element scheme is studied for the Navier–Stokes equations with large Reynolds number. In the designing of numerical scheme, the nonlinear term is explicitly treated such that one only needs to solve a constant coefficient algebraic system at each time step. Meanwhile, the proposed scheme is unconditionally stable without any condition of the time step <span><math><mi>τ</mi></math></span> and mesh size <span><math><mi>h</mi></math></span>. In finite element discretization, we use the stable Taylor-Hood element for the approximation of the velocity and pressure. By a rigorous analysis, we derive an uniform <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> error estimate <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>τ</mi><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> of the velocity in which the constant is independent of the viscosity coefficient. Finally, numerical experiments are given to support theoretical results and the efficiency of the proposed scheme.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform error analysis of an exponential IMEX-SAV method for the incompressible flows with large Reynolds number based on grad-div stabilization\",\"authors\":\"Rong An, Weiwen Wan\",\"doi\":\"10.1016/j.cnsns.2024.108386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on the grad-div stabilization and scalar auxiliary variable (SAV) methods, a first-order Euler implicit/explicit finite element scheme is studied for the Navier–Stokes equations with large Reynolds number. In the designing of numerical scheme, the nonlinear term is explicitly treated such that one only needs to solve a constant coefficient algebraic system at each time step. Meanwhile, the proposed scheme is unconditionally stable without any condition of the time step <span><math><mi>τ</mi></math></span> and mesh size <span><math><mi>h</mi></math></span>. In finite element discretization, we use the stable Taylor-Hood element for the approximation of the velocity and pressure. By a rigorous analysis, we derive an uniform <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> error estimate <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>τ</mi><mo>+</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> of the velocity in which the constant is independent of the viscosity coefficient. Finally, numerical experiments are given to support theoretical results and the efficiency of the proposed scheme.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005719\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005719","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Uniform error analysis of an exponential IMEX-SAV method for the incompressible flows with large Reynolds number based on grad-div stabilization
Based on the grad-div stabilization and scalar auxiliary variable (SAV) methods, a first-order Euler implicit/explicit finite element scheme is studied for the Navier–Stokes equations with large Reynolds number. In the designing of numerical scheme, the nonlinear term is explicitly treated such that one only needs to solve a constant coefficient algebraic system at each time step. Meanwhile, the proposed scheme is unconditionally stable without any condition of the time step and mesh size . In finite element discretization, we use the stable Taylor-Hood element for the approximation of the velocity and pressure. By a rigorous analysis, we derive an uniform error estimate of the velocity in which the constant is independent of the viscosity coefficient. Finally, numerical experiments are given to support theoretical results and the efficiency of the proposed scheme.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.