非线性函数估计:函数可探测性与全信息估计

IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Automatica Pub Date : 2024-10-08 DOI:10.1016/j.automatica.2024.111945
Simon Muntwiler, Johannes Köhler, Melanie N. Zeilinger
{"title":"非线性函数估计:函数可探测性与全信息估计","authors":"Simon Muntwiler,&nbsp;Johannes Köhler,&nbsp;Melanie N. Zeilinger","doi":"10.1016/j.automatica.2024.111945","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the design of functional estimators, i.e., approaches to compute an estimate of a nonlinear function of the state of a general nonlinear dynamical system subject to process noise based on noisy output measurements. To this end, we introduce a novel functional detectability notion in the form of incremental input/output-to-output stability (<span><math><mi>δ</mi></math></span>-IOOS). We show that <span><math><mi>δ</mi></math></span>-IOOS is a necessary condition for the existence of a functional estimator satisfying an input-to-output type stability property. Additionally, we prove that a system is functional detectable if and only if it admits a corresponding <span><math><mi>δ</mi></math></span>-IOOS Lyapunov function. Furthermore, <span><math><mi>δ</mi></math></span>-IOOS is shown to be a sufficient condition for the design of a stable functional estimator by introducing the design of a full information estimation (FIE) approach for functional estimation. Together, we present a unified framework to study functional estimation with a detectability condition, which is necessary and sufficient for the existence of a stable functional estimator, and a corresponding functional estimator design. The practical need for and applicability of the proposed functional estimator design is illustrated with a numerical example of a power system.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear functional estimation: Functional detectability and full information estimation\",\"authors\":\"Simon Muntwiler,&nbsp;Johannes Köhler,&nbsp;Melanie N. Zeilinger\",\"doi\":\"10.1016/j.automatica.2024.111945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the design of functional estimators, i.e., approaches to compute an estimate of a nonlinear function of the state of a general nonlinear dynamical system subject to process noise based on noisy output measurements. To this end, we introduce a novel functional detectability notion in the form of incremental input/output-to-output stability (<span><math><mi>δ</mi></math></span>-IOOS). We show that <span><math><mi>δ</mi></math></span>-IOOS is a necessary condition for the existence of a functional estimator satisfying an input-to-output type stability property. Additionally, we prove that a system is functional detectable if and only if it admits a corresponding <span><math><mi>δ</mi></math></span>-IOOS Lyapunov function. Furthermore, <span><math><mi>δ</mi></math></span>-IOOS is shown to be a sufficient condition for the design of a stable functional estimator by introducing the design of a full information estimation (FIE) approach for functional estimation. Together, we present a unified framework to study functional estimation with a detectability condition, which is necessary and sufficient for the existence of a stable functional estimator, and a corresponding functional estimator design. The practical need for and applicability of the proposed functional estimator design is illustrated with a numerical example of a power system.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109824004394\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824004394","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是函数估计器的设计,即根据噪声输出测量结果计算一般非线性动态系统状态的非线性函数估计值的方法。为此,我们以增量输入/输出到输出稳定性(δ-IOOS)的形式引入了一种新的功能可探测性概念。我们证明,δ-IOOS 是满足输入输出类型稳定性的功能估计器存在的必要条件。此外,我们还证明,当且仅当一个系统具有相应的 δ-IOOS Lyapunov 函数时,该系统才具有功能可探测性。此外,通过引入函数估计的全信息估计(FIE)方法,δ-IOOS 被证明是设计稳定函数估计器的充分条件。综上所述,我们提出了一个统一的框架来研究具有可探测性条件的函数估计,该可探测性条件是存在稳定函数估计器的必要条件和充分条件,并提出了相应的函数估计器设计。我们以一个电力系统为例,说明了所提出的函数估计器设计的实际需要和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear functional estimation: Functional detectability and full information estimation
We consider the design of functional estimators, i.e., approaches to compute an estimate of a nonlinear function of the state of a general nonlinear dynamical system subject to process noise based on noisy output measurements. To this end, we introduce a novel functional detectability notion in the form of incremental input/output-to-output stability (δ-IOOS). We show that δ-IOOS is a necessary condition for the existence of a functional estimator satisfying an input-to-output type stability property. Additionally, we prove that a system is functional detectable if and only if it admits a corresponding δ-IOOS Lyapunov function. Furthermore, δ-IOOS is shown to be a sufficient condition for the design of a stable functional estimator by introducing the design of a full information estimation (FIE) approach for functional estimation. Together, we present a unified framework to study functional estimation with a detectability condition, which is necessary and sufficient for the existence of a stable functional estimator, and a corresponding functional estimator design. The practical need for and applicability of the proposed functional estimator design is illustrated with a numerical example of a power system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatica
Automatica 工程技术-工程:电子与电气
CiteScore
10.70
自引率
7.80%
发文量
617
审稿时长
5 months
期刊介绍: Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field. After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience. Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.
期刊最新文献
Predict globally, correct locally: Parallel-in-time optimization of neural networks Set-based value operators for non-stationary and uncertain Markov decision processes Successive over relaxation for model-free LQR control of discrete-time Markov jump systems Nonuniqueness and convergence to equivalent solutions in observer-based inverse reinforcement learning Asymmetrical vulnerability of heterogeneous multi-agent systems under false-data injection attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1