Roopitha Kaimal , Jiarui Feng , Dunant Halim , Yong Ren , Voon-Loong Wong , Kean How Cheah
{"title":"压电驱动波形对振动网格雾化器(VMA)性能特征的影响","authors":"Roopitha Kaimal , Jiarui Feng , Dunant Halim , Yong Ren , Voon-Loong Wong , Kean How Cheah","doi":"10.1016/j.expthermflusci.2024.111331","DOIUrl":null,"url":null,"abstract":"<div><div>Vibrating mesh atomizer (VMA) is a specific type of ultrasonic atomizer known for its low power consumption and production of uniformly fine droplets. While previous research has provided a basic understanding of VMA operation, it has primarily focused on driving the piezoelectric actuator with continuous and symmetrical waveforms, such as sine and square waveforms. This study aims to experimentally investigate the impact of different driving waveforms on the ultrasonic atomization process and the associated performance characteristics. Specifically, the effects of pulse waveforms (Gauss and Lorentz pulse) were analyzed with high rates of energy deposition and asymmetrical hybrid waveforms (trapezia and absolute sine), featuring distinct negative cycles, by comparing them with conventional symmetrical waveforms (sine and square). Pulse waveforms suppress the growing stage but provide a high flux of input energy, facilitating the detachment of liquid into fine droplets, resulting in uniformly distributed droplets with VMDs of 5.84 μm and 4.71 μm for Gauss and Lorentz waveforms, respectively. Conversely, shorter negative cycles in asymmetrical hybrid waveforms reduce liquid suction into the micronozzle, leading to higher energy flux during subsequent positive cycles that promote the growing stage, producing larger droplets with VMDs of 10.82 μm and 11.86 μm for trapezia and absolute (abs) sine waveforms, respectively. Additionally, high-speed imaging reveals irregular pulsating behaviors in the atomization process when using pulse waveforms, suggesting a reciprocating-pump-like operation mechanism in VMA atomization. These new insights contribute to an improved understanding of the atomization mechanism in VMAs.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"160 ","pages":"Article 111331"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of piezoelectric driving waveform on performance characteristics of vibrating mesh atomizer (VMA)\",\"authors\":\"Roopitha Kaimal , Jiarui Feng , Dunant Halim , Yong Ren , Voon-Loong Wong , Kean How Cheah\",\"doi\":\"10.1016/j.expthermflusci.2024.111331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vibrating mesh atomizer (VMA) is a specific type of ultrasonic atomizer known for its low power consumption and production of uniformly fine droplets. While previous research has provided a basic understanding of VMA operation, it has primarily focused on driving the piezoelectric actuator with continuous and symmetrical waveforms, such as sine and square waveforms. This study aims to experimentally investigate the impact of different driving waveforms on the ultrasonic atomization process and the associated performance characteristics. Specifically, the effects of pulse waveforms (Gauss and Lorentz pulse) were analyzed with high rates of energy deposition and asymmetrical hybrid waveforms (trapezia and absolute sine), featuring distinct negative cycles, by comparing them with conventional symmetrical waveforms (sine and square). Pulse waveforms suppress the growing stage but provide a high flux of input energy, facilitating the detachment of liquid into fine droplets, resulting in uniformly distributed droplets with VMDs of 5.84 μm and 4.71 μm for Gauss and Lorentz waveforms, respectively. Conversely, shorter negative cycles in asymmetrical hybrid waveforms reduce liquid suction into the micronozzle, leading to higher energy flux during subsequent positive cycles that promote the growing stage, producing larger droplets with VMDs of 10.82 μm and 11.86 μm for trapezia and absolute (abs) sine waveforms, respectively. Additionally, high-speed imaging reveals irregular pulsating behaviors in the atomization process when using pulse waveforms, suggesting a reciprocating-pump-like operation mechanism in VMA atomization. These new insights contribute to an improved understanding of the atomization mechanism in VMAs.</div></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":\"160 \",\"pages\":\"Article 111331\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177724002000\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724002000","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Impact of piezoelectric driving waveform on performance characteristics of vibrating mesh atomizer (VMA)
Vibrating mesh atomizer (VMA) is a specific type of ultrasonic atomizer known for its low power consumption and production of uniformly fine droplets. While previous research has provided a basic understanding of VMA operation, it has primarily focused on driving the piezoelectric actuator with continuous and symmetrical waveforms, such as sine and square waveforms. This study aims to experimentally investigate the impact of different driving waveforms on the ultrasonic atomization process and the associated performance characteristics. Specifically, the effects of pulse waveforms (Gauss and Lorentz pulse) were analyzed with high rates of energy deposition and asymmetrical hybrid waveforms (trapezia and absolute sine), featuring distinct negative cycles, by comparing them with conventional symmetrical waveforms (sine and square). Pulse waveforms suppress the growing stage but provide a high flux of input energy, facilitating the detachment of liquid into fine droplets, resulting in uniformly distributed droplets with VMDs of 5.84 μm and 4.71 μm for Gauss and Lorentz waveforms, respectively. Conversely, shorter negative cycles in asymmetrical hybrid waveforms reduce liquid suction into the micronozzle, leading to higher energy flux during subsequent positive cycles that promote the growing stage, producing larger droplets with VMDs of 10.82 μm and 11.86 μm for trapezia and absolute (abs) sine waveforms, respectively. Additionally, high-speed imaging reveals irregular pulsating behaviors in the atomization process when using pulse waveforms, suggesting a reciprocating-pump-like operation mechanism in VMA atomization. These new insights contribute to an improved understanding of the atomization mechanism in VMAs.
期刊介绍:
Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.