可行解决方案的优越性--使用阀点加载的蛾焰优化器

Mohammad Khurshed Alam , Herwan Sulaiman , Asma Ferdowsi , Md Shaoran Sayem , Md Mahfuzer Akter Ringku , Md. Foysal
{"title":"可行解决方案的优越性--使用阀点加载的蛾焰优化器","authors":"Mohammad Khurshed Alam ,&nbsp;Herwan Sulaiman ,&nbsp;Asma Ferdowsi ,&nbsp;Md Shaoran Sayem ,&nbsp;Md Mahfuzer Akter Ringku ,&nbsp;Md. Foysal","doi":"10.1016/j.rico.2024.100465","DOIUrl":null,"url":null,"abstract":"<div><div>The optimal power flow (OPF) problem deals with large-scale, nonlinear, and non-convex optimization challenges, often accompanied by stringent constraints. Apart from the primary operational objectives of an energy system, ensuring load bus voltages remain within acceptable ranges is essential for providing high-quality consumer services. The Moth-Flame Optimizer (MFO) method is inspired by the unique night flight characteristics of moths. Moths, much like butterflies, undergo two distinct life stages: larval and mature. They have evolved the ability to navigate at night using a technique called transverse orientation. This article presents a methodology for determining the optimal energy transmission system configuration by integrating power producers. The MFO, Grey Wolf Optimizer (GWO), Success-history-based Parameter Adaptation Technique of Differential Evolution - Superiority of Feasible Solutions (SHADE-SF), and Superiority of Feasible Solutions-Moth Flame Optimizer (SF-MFO) algorithms are applied to address the OPF problem with two objective functions: (1) reducing energy production costs and (2) minimizing power losses. The efficiency of MFO, SF-MFO, SHADE-SF, and GWO for the OPF challenge is evaluated using IEEE 30-feeder and IEEE 57-feeder systems. Based on the collected data, SF-MFO demonstrated the best performance across all simulated instances. For instance, the electricity production costs generated by SF-MFO are $845.521/hr and $25,908.325/hr for the IEEE 30-feeder and IEEE 57-feeder systems, respectively. This represents a cost savings of 0.37 % and 0.36 % per hour, respectively, compared to the lowest values obtained by other comparative methods.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"17 ","pages":"Article 100465"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The superiority of feasible solutions-moth flame optimizer using valve point loading\",\"authors\":\"Mohammad Khurshed Alam ,&nbsp;Herwan Sulaiman ,&nbsp;Asma Ferdowsi ,&nbsp;Md Shaoran Sayem ,&nbsp;Md Mahfuzer Akter Ringku ,&nbsp;Md. Foysal\",\"doi\":\"10.1016/j.rico.2024.100465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The optimal power flow (OPF) problem deals with large-scale, nonlinear, and non-convex optimization challenges, often accompanied by stringent constraints. Apart from the primary operational objectives of an energy system, ensuring load bus voltages remain within acceptable ranges is essential for providing high-quality consumer services. The Moth-Flame Optimizer (MFO) method is inspired by the unique night flight characteristics of moths. Moths, much like butterflies, undergo two distinct life stages: larval and mature. They have evolved the ability to navigate at night using a technique called transverse orientation. This article presents a methodology for determining the optimal energy transmission system configuration by integrating power producers. The MFO, Grey Wolf Optimizer (GWO), Success-history-based Parameter Adaptation Technique of Differential Evolution - Superiority of Feasible Solutions (SHADE-SF), and Superiority of Feasible Solutions-Moth Flame Optimizer (SF-MFO) algorithms are applied to address the OPF problem with two objective functions: (1) reducing energy production costs and (2) minimizing power losses. The efficiency of MFO, SF-MFO, SHADE-SF, and GWO for the OPF challenge is evaluated using IEEE 30-feeder and IEEE 57-feeder systems. Based on the collected data, SF-MFO demonstrated the best performance across all simulated instances. For instance, the electricity production costs generated by SF-MFO are $845.521/hr and $25,908.325/hr for the IEEE 30-feeder and IEEE 57-feeder systems, respectively. This represents a cost savings of 0.37 % and 0.36 % per hour, respectively, compared to the lowest values obtained by other comparative methods.</div></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"17 \",\"pages\":\"Article 100465\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266672072400095X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266672072400095X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

最优功率流(OPF)问题涉及大规模、非线性和非凸优化挑战,通常伴有严格的约束条件。除了能源系统的主要运行目标外,确保负载母线电压保持在可接受的范围内对于提供高质量的用户服务至关重要。飞蛾-火焰优化器(MFO)方法的灵感来自飞蛾独特的夜间飞行特性。飞蛾与蝴蝶一样,经历了两个不同的生命阶段:幼虫期和成熟期。它们进化出了利用横向定向技术在夜间导航的能力。本文介绍了一种通过整合电力生产商来确定最佳能源传输系统配置的方法。本文采用 MFO、灰狼优化器 (GWO)、基于成功历史参数适应技术的差分进化-可行方案优选 (SHADE-SF) 和可行方案优选-蛾焰优化器 (SF-MFO) 算法来解决 OPF 问题,该问题有两个目标函数:(1) 降低能源生产成本;(2) 尽量减少电力损耗。使用 IEEE 30 馈电系统和 IEEE 57 馈电系统评估了 MFO、SF-MFO、SHADE-SF 和 GWO 应对 OPF 挑战的效率。根据收集到的数据,SF-MFO 在所有模拟实例中表现最佳。例如,在 IEEE 30 馈电器和 IEEE 57 馈电器系统中,SF-MFO 产生的发电成本分别为 845.521 美元/小时和 25,908.325 美元/小时。与其他比较方法得出的最低值相比,每小时分别节约成本 0.37 % 和 0.36 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The superiority of feasible solutions-moth flame optimizer using valve point loading
The optimal power flow (OPF) problem deals with large-scale, nonlinear, and non-convex optimization challenges, often accompanied by stringent constraints. Apart from the primary operational objectives of an energy system, ensuring load bus voltages remain within acceptable ranges is essential for providing high-quality consumer services. The Moth-Flame Optimizer (MFO) method is inspired by the unique night flight characteristics of moths. Moths, much like butterflies, undergo two distinct life stages: larval and mature. They have evolved the ability to navigate at night using a technique called transverse orientation. This article presents a methodology for determining the optimal energy transmission system configuration by integrating power producers. The MFO, Grey Wolf Optimizer (GWO), Success-history-based Parameter Adaptation Technique of Differential Evolution - Superiority of Feasible Solutions (SHADE-SF), and Superiority of Feasible Solutions-Moth Flame Optimizer (SF-MFO) algorithms are applied to address the OPF problem with two objective functions: (1) reducing energy production costs and (2) minimizing power losses. The efficiency of MFO, SF-MFO, SHADE-SF, and GWO for the OPF challenge is evaluated using IEEE 30-feeder and IEEE 57-feeder systems. Based on the collected data, SF-MFO demonstrated the best performance across all simulated instances. For instance, the electricity production costs generated by SF-MFO are $845.521/hr and $25,908.325/hr for the IEEE 30-feeder and IEEE 57-feeder systems, respectively. This represents a cost savings of 0.37 % and 0.36 % per hour, respectively, compared to the lowest values obtained by other comparative methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
期刊最新文献
Optimal control analysis of a mathematical model for guava nutrients in an integrated farming with cost-effectiveness Observer-based fuzzy T–S control with an estimation error guarantee for MPPT of a photovoltaic battery charger in partial shade conditions Satellite imagery, big data, IoT and deep learning techniques for wheat yield prediction in Morocco Selective opposition based constrained barnacle mating optimization: Theory and applications Comparative exploration on EEG signal filtering using window control methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1