Qian Yang , Fuquan Tang , Zhenghua Tian , Junlei Xue , Chao Zhu , Yu Su , Pengfei Li
{"title":"智能处理无人机遥感数据,在复杂地形中建立高精度 DEM:中国黄土高原案例研究","authors":"Qian Yang , Fuquan Tang , Zhenghua Tian , Junlei Xue , Chao Zhu , Yu Su , Pengfei Li","doi":"10.1016/j.jag.2024.104187","DOIUrl":null,"url":null,"abstract":"<div><div>The Loess Plateau in China is renowned for its dense gullies and complex terrain, with drastic changes primarily due to soil erosion and human activities, significantly affecting the evolution of the ecological environment. The complex terrains and dense vegetation make precise terrain measurement and modeling challenging. Although the development of Unmanned Aerial Vehicle (UAV) light detection and ranging (LiDAR) scanning and photogrammetry technologies has improved data acquisition precision, relying solely on one remote sensing technology struggles with accurately extracting bare earth information. This study adopted a method that fuses UAV lidar scanning with aerial photogrammetric imagery, generating detailed lidar point cloud data that includes coordinate, reflectance, true color, and texture information to enhance data classifiability and interpretability. Subsequently, a point cloud classification model based on the Transformer architecture (Stratified Transformer) is introduced to intelligently complete the initial ground point cloud extraction in complex gully terrains. Further, to address residual non-ground noise in the initial ground point clouds, a new point cloud classification optimization algorithm (MDD, Multi-scale C2M Distance Difference) is proposed. This algorithm, based on the characteristics of discrete and non-continuous with the ground surface of the noisy point clouds, effectively eliminates the discrete noisy point clouds by analyzing the distances between the point clouds and TINs (Triangular Irregular Networks) of different scales and their differences. This study effectively addresses the technical challenges of ground point cloud extraction in the mixed environment of complex terrain and vegetation, solving the problem of precise terrain measurement and intelligent data processing in complex gully terrains, and offering new technical pathways for detecting geomorphological changes.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104187"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent processing of UAV remote sensing data for building high-precision DEMs in complex terrain: A case study of Loess Plateau in China\",\"authors\":\"Qian Yang , Fuquan Tang , Zhenghua Tian , Junlei Xue , Chao Zhu , Yu Su , Pengfei Li\",\"doi\":\"10.1016/j.jag.2024.104187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Loess Plateau in China is renowned for its dense gullies and complex terrain, with drastic changes primarily due to soil erosion and human activities, significantly affecting the evolution of the ecological environment. The complex terrains and dense vegetation make precise terrain measurement and modeling challenging. Although the development of Unmanned Aerial Vehicle (UAV) light detection and ranging (LiDAR) scanning and photogrammetry technologies has improved data acquisition precision, relying solely on one remote sensing technology struggles with accurately extracting bare earth information. This study adopted a method that fuses UAV lidar scanning with aerial photogrammetric imagery, generating detailed lidar point cloud data that includes coordinate, reflectance, true color, and texture information to enhance data classifiability and interpretability. Subsequently, a point cloud classification model based on the Transformer architecture (Stratified Transformer) is introduced to intelligently complete the initial ground point cloud extraction in complex gully terrains. Further, to address residual non-ground noise in the initial ground point clouds, a new point cloud classification optimization algorithm (MDD, Multi-scale C2M Distance Difference) is proposed. This algorithm, based on the characteristics of discrete and non-continuous with the ground surface of the noisy point clouds, effectively eliminates the discrete noisy point clouds by analyzing the distances between the point clouds and TINs (Triangular Irregular Networks) of different scales and their differences. This study effectively addresses the technical challenges of ground point cloud extraction in the mixed environment of complex terrain and vegetation, solving the problem of precise terrain measurement and intelligent data processing in complex gully terrains, and offering new technical pathways for detecting geomorphological changes.</div></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"134 \",\"pages\":\"Article 104187\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224005430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Intelligent processing of UAV remote sensing data for building high-precision DEMs in complex terrain: A case study of Loess Plateau in China
The Loess Plateau in China is renowned for its dense gullies and complex terrain, with drastic changes primarily due to soil erosion and human activities, significantly affecting the evolution of the ecological environment. The complex terrains and dense vegetation make precise terrain measurement and modeling challenging. Although the development of Unmanned Aerial Vehicle (UAV) light detection and ranging (LiDAR) scanning and photogrammetry technologies has improved data acquisition precision, relying solely on one remote sensing technology struggles with accurately extracting bare earth information. This study adopted a method that fuses UAV lidar scanning with aerial photogrammetric imagery, generating detailed lidar point cloud data that includes coordinate, reflectance, true color, and texture information to enhance data classifiability and interpretability. Subsequently, a point cloud classification model based on the Transformer architecture (Stratified Transformer) is introduced to intelligently complete the initial ground point cloud extraction in complex gully terrains. Further, to address residual non-ground noise in the initial ground point clouds, a new point cloud classification optimization algorithm (MDD, Multi-scale C2M Distance Difference) is proposed. This algorithm, based on the characteristics of discrete and non-continuous with the ground surface of the noisy point clouds, effectively eliminates the discrete noisy point clouds by analyzing the distances between the point clouds and TINs (Triangular Irregular Networks) of different scales and their differences. This study effectively addresses the technical challenges of ground point cloud extraction in the mixed environment of complex terrain and vegetation, solving the problem of precise terrain measurement and intelligent data processing in complex gully terrains, and offering new technical pathways for detecting geomorphological changes.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.