银(I)和金(III)与咪康唑的配合物:金属离子对配位唑抗菌活性的影响

IF 2.7 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Inorganica Chimica Acta Pub Date : 2024-10-05 DOI:10.1016/j.ica.2024.122393
Nevena Lj. Stevanović , Jakob Kljun , Sanja Skaro Bogojevic , Dharmarajan Sriram , Matija Zlatar , Jasmina Nikodinovic-Runic , Iztok Turel , Miloš I. Djuran , Biljana Đ. Glišić
{"title":"银(I)和金(III)与咪康唑的配合物:金属离子对配位唑抗菌活性的影响","authors":"Nevena Lj. Stevanović ,&nbsp;Jakob Kljun ,&nbsp;Sanja Skaro Bogojevic ,&nbsp;Dharmarajan Sriram ,&nbsp;Matija Zlatar ,&nbsp;Jasmina Nikodinovic-Runic ,&nbsp;Iztok Turel ,&nbsp;Miloš I. Djuran ,&nbsp;Biljana Đ. Glišić","doi":"10.1016/j.ica.2024.122393","DOIUrl":null,"url":null,"abstract":"<div><div>To develop a new antimicrobial agent, we used the clinically approved antifungal azole, miconazole (mcz), as a ligand for the synthesis of silver(I) and gold(III) complexes. The new complexes [Ag(NO<sub>3</sub>-<em>O</em>)(mcz-<em>N</em>)<sub>2</sub>] (<strong>1</strong>) and [AuCl<sub>3</sub>(mcz-<em>N</em>)] (<strong>2</strong>) were synthesized and characterized by <sup>1</sup>H NMR, IR and UV–Vis spectroscopy and mass spectrometry, while the crystal structure of <strong>1</strong> was determined by single-crystal X-ray diffraction analysis. From the results obtained, it can be concluded that in both complexes, mcz is monodentately coordinated to the silver(I) and gold(III) ions through the imidazole nitrogen atom N3. In the solid state, complex <strong>1</strong> contains two mcz ligands and monodentately coordinated nitrate in the third position, while in the case of <strong>2</strong> gold(III) ion is coordinated by one mcz and three chlorido ligands, resulting in the expected square-planar arrangement around the metal center. DFT and TDDFT calculations were employed to elucidate the electronic structures and thermodynamic stability of the synthesized complexes in solution to complement the experimental findings. The coordination of mcz to silver(I) and gold(III) ions leads to an enhancement of its activity against Gram-negative <em>Escherichia coli</em> and <em>Pseudomonas aeruginosa</em> strains, while against the panel of <em>Staphylococcus aureus</em> and <em>Candida</em> species, only <strong>2</strong> shows improved activity compared to mcz. Both complexes <strong>1</strong> and <strong>2</strong> were tested <em>in vitro</em> for their antimycobacterial activity against the strain <em>Mycobacterium tuberculosis</em> H37Rv and showed good growth inhibition with minimum inhibitory concentration (MIC) values of 3.12 and 8.69 μM, respectively, with complex <strong>1</strong> being twice effective as mcz (MIC = 7.50 μM). Complex <strong>2</strong> significantly reduced the production of pyocyanin, a virulence factor in <em>P. aeruginosa</em> controlled by quorum sensing, while this effect was not observed for <strong>1</strong>.</div></div>","PeriodicalId":13599,"journal":{"name":"Inorganica Chimica Acta","volume":"574 ","pages":"Article 122393"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silver(I) and gold(III) complexes with miconazole: The influence of the metal ion on the antimicrobial activity of the coordinated azole\",\"authors\":\"Nevena Lj. Stevanović ,&nbsp;Jakob Kljun ,&nbsp;Sanja Skaro Bogojevic ,&nbsp;Dharmarajan Sriram ,&nbsp;Matija Zlatar ,&nbsp;Jasmina Nikodinovic-Runic ,&nbsp;Iztok Turel ,&nbsp;Miloš I. Djuran ,&nbsp;Biljana Đ. Glišić\",\"doi\":\"10.1016/j.ica.2024.122393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To develop a new antimicrobial agent, we used the clinically approved antifungal azole, miconazole (mcz), as a ligand for the synthesis of silver(I) and gold(III) complexes. The new complexes [Ag(NO<sub>3</sub>-<em>O</em>)(mcz-<em>N</em>)<sub>2</sub>] (<strong>1</strong>) and [AuCl<sub>3</sub>(mcz-<em>N</em>)] (<strong>2</strong>) were synthesized and characterized by <sup>1</sup>H NMR, IR and UV–Vis spectroscopy and mass spectrometry, while the crystal structure of <strong>1</strong> was determined by single-crystal X-ray diffraction analysis. From the results obtained, it can be concluded that in both complexes, mcz is monodentately coordinated to the silver(I) and gold(III) ions through the imidazole nitrogen atom N3. In the solid state, complex <strong>1</strong> contains two mcz ligands and monodentately coordinated nitrate in the third position, while in the case of <strong>2</strong> gold(III) ion is coordinated by one mcz and three chlorido ligands, resulting in the expected square-planar arrangement around the metal center. DFT and TDDFT calculations were employed to elucidate the electronic structures and thermodynamic stability of the synthesized complexes in solution to complement the experimental findings. The coordination of mcz to silver(I) and gold(III) ions leads to an enhancement of its activity against Gram-negative <em>Escherichia coli</em> and <em>Pseudomonas aeruginosa</em> strains, while against the panel of <em>Staphylococcus aureus</em> and <em>Candida</em> species, only <strong>2</strong> shows improved activity compared to mcz. Both complexes <strong>1</strong> and <strong>2</strong> were tested <em>in vitro</em> for their antimycobacterial activity against the strain <em>Mycobacterium tuberculosis</em> H37Rv and showed good growth inhibition with minimum inhibitory concentration (MIC) values of 3.12 and 8.69 μM, respectively, with complex <strong>1</strong> being twice effective as mcz (MIC = 7.50 μM). Complex <strong>2</strong> significantly reduced the production of pyocyanin, a virulence factor in <em>P. aeruginosa</em> controlled by quorum sensing, while this effect was not observed for <strong>1</strong>.</div></div>\",\"PeriodicalId\":13599,\"journal\":{\"name\":\"Inorganica Chimica Acta\",\"volume\":\"574 \",\"pages\":\"Article 122393\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganica Chimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020169324004845\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020169324004845","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

为了开发一种新的抗菌剂,我们以临床上认可的抗真菌唑类药物咪康唑(mcz)为配体,合成了银(I)和金(III)配合物。我们合成了新的配合物[Ag(NO3-O)(mcz-N)2](1)和[AuCl3(mcz-N)](2),并用 1H NMR、IR、UV-Vis 光谱和质谱进行了表征,同时用单晶 X 射线衍射分析确定了 1 的晶体结构。从所得结果可以得出结论:在这两种配合物中,mcz 通过咪唑氮原子 N3 与银(I)和金(III)离子单价配位。在固态下,配合物 1 包含两个 mcz 配体和位于第三个位置的单价配位的硝酸盐,而在配合物 2 中,金(III)离子由一个 mcz 和三个氯配体配位,从而在金属中心周围形成了预期的方平面布置。为了补充实验结果,我们采用了 DFT 和 TDDFT 计算方法来阐明合成配合物在溶液中的电子结构和热力学稳定性。mcz 与银(I)和金(III)离子的配位增强了其对革兰氏阴性大肠杆菌和绿脓杆菌的活性,而与 mcz 相比,只有 2 对金黄色葡萄球菌和白色念珠菌的活性有所提高。复合物 1 和 2 对结核分枝杆菌 H37Rv 的抗霉菌活性进行了体外测试,结果显示出良好的生长抑制作用,最低抑制浓度 (MIC) 值分别为 3.12 和 8.69 μM,其中复合物 1 的效果是 mcz 的两倍(MIC = 7.50 μM)。复合物 2 能明显降低铜绿假单胞菌通过法定人数感应控制的毒力因子--焦花青素的产生,而复合物 1 则没有这种效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silver(I) and gold(III) complexes with miconazole: The influence of the metal ion on the antimicrobial activity of the coordinated azole
To develop a new antimicrobial agent, we used the clinically approved antifungal azole, miconazole (mcz), as a ligand for the synthesis of silver(I) and gold(III) complexes. The new complexes [Ag(NO3-O)(mcz-N)2] (1) and [AuCl3(mcz-N)] (2) were synthesized and characterized by 1H NMR, IR and UV–Vis spectroscopy and mass spectrometry, while the crystal structure of 1 was determined by single-crystal X-ray diffraction analysis. From the results obtained, it can be concluded that in both complexes, mcz is monodentately coordinated to the silver(I) and gold(III) ions through the imidazole nitrogen atom N3. In the solid state, complex 1 contains two mcz ligands and monodentately coordinated nitrate in the third position, while in the case of 2 gold(III) ion is coordinated by one mcz and three chlorido ligands, resulting in the expected square-planar arrangement around the metal center. DFT and TDDFT calculations were employed to elucidate the electronic structures and thermodynamic stability of the synthesized complexes in solution to complement the experimental findings. The coordination of mcz to silver(I) and gold(III) ions leads to an enhancement of its activity against Gram-negative Escherichia coli and Pseudomonas aeruginosa strains, while against the panel of Staphylococcus aureus and Candida species, only 2 shows improved activity compared to mcz. Both complexes 1 and 2 were tested in vitro for their antimycobacterial activity against the strain Mycobacterium tuberculosis H37Rv and showed good growth inhibition with minimum inhibitory concentration (MIC) values of 3.12 and 8.69 μM, respectively, with complex 1 being twice effective as mcz (MIC = 7.50 μM). Complex 2 significantly reduced the production of pyocyanin, a virulence factor in P. aeruginosa controlled by quorum sensing, while this effect was not observed for 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganica Chimica Acta
Inorganica Chimica Acta 化学-无机化学与核化学
CiteScore
6.00
自引率
3.60%
发文量
440
审稿时长
35 days
期刊介绍: Inorganica Chimica Acta is an established international forum for all aspects of advanced Inorganic Chemistry. Original papers of high scientific level and interest are published in the form of Articles and Reviews. Topics covered include: • chemistry of the main group elements and the d- and f-block metals, including the synthesis, characterization and reactivity of coordination, organometallic, biomimetic, supramolecular coordination compounds, including associated computational studies; • synthesis, physico-chemical properties, applications of molecule-based nano-scaled clusters and nanomaterials designed using the principles of coordination chemistry, as well as coordination polymers (CPs), metal-organic frameworks (MOFs), metal-organic polyhedra (MPOs); • reaction mechanisms and physico-chemical investigations computational studies of metalloenzymes and their models; • applications of inorganic compounds, metallodrugs and molecule-based materials. Papers composed primarily of structural reports will typically not be considered for publication.
期刊最新文献
Graphical abstract TOC Contents continued Editorial Board Graphical abstract TOC Alkynyl bipyridine Pt(II) metallacycles with various combinations of dehydrobenzo[12]annulenes unit ligands showing high third-order nonlinear optical responses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1